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The curvature of spacetime acts on matter to manifest itself as
“gravity,” and energy and momentum influence spacetime to create
curvature.

Sean M. Carroll
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On the Stability and Detection of
Compact Objects in General Relativity

by Prashant Kocherlakota

This thesis has two broad themes: stability and detection of compact objects. However, we think it natural to
divide further the material on detection presented here, due to their evident disparateness, into analyses of (a)
the structures of their shadows and images, and (b) how gravitomagnetism affects the appearance of pulsars
present in the vicinity of compact objects.

After a short prelude to the main body in Chapter 1, we begin with an extensive pedagogical introduction to
the notions of stability in general relativity in Chapter 2. We then move to a discussion of the quasi-normal
mode stability analysis of near-extremal Kerr superspinars. These are hypothetical non-singular compact
objects whose exterior geometry is given by the overspinning Kerr metric (𝑀2 ≲ 𝐽), and we will show that
they are indeed stable, for a fairly large class of inner boundary conditions. A short description of our
nascent results on the extent of non-linear stability of the Schwarzschild black hole formation process, via
the Datt-Oppenheimer-Snyder collapse of dust, against fluid density perturbations is then presented. We end
this chapter by presenting an attempt to study the stability of spacetimes within the framework of symplectic
geometry; we also import some of the language of dynamical systems into general relativity.

In Chapter 3, we examine the behaviour of light in the presence of compact objects, and show in particular
how some static naked singularity models cast shadows that are indistinguishable from those that are cast by
static Schwarzschild black holes. Further, images of their accretion discs, as seen by an asymptotic observer,
are also identical in these cases. On the other hand, we identify a class of naked singularity models whose
images are distinctly different from those of the black holes.

In Chapter 4, we study the origin and properties of the so-called gravitomagnetic interaction that couples the
intrinsic spin-angular momenta of a test object and a compact object. Specifically, this interaction causes the
spin-axis of the test object to precess, and we proceed to outline local tests, based on this effect, that can be
used to distinguish Kerr black holes from Kerr naked singularities. For example, if one considers the naturally
appealing model of circular motion around the central compact object for the test object, it can be shown that
the associated frequency of precession grows as the size of the orbit shrinks. Remarkably, in the approach
to an event horizon, it becomes unbounded. We end with a comprehensive application of these results to
pulsar-black hole systems, and comment on how it may be possible to obtain an independent accurate estimate
for black hole parameters from pulsar timing measurements, by incorporating these effects, in the future.

We conclude with a summary and a discussion of future directions briefly in Chapter 5.
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Chapter 1

Introduction

General relativity is the theory of space, time, and gravitation developed by Einstein between 1907-1915.
In this framework, spacetime is modelled by a four-dimensional Lorentzian manifold M equipped with a
metric g, which is a smooth, non-degenerate, symmetric (0,2)-type tensor field. Remarkably, spacetime is a
dynamical object and the associated dynamical equations are called the Einstein field equations. These relate
the local spacetime curvature, characterized by the metric, to the matter distribution within that spacetime,
described by an energy-momentum-stress tensor.

The focus of this thesis will mostly be on the exploration of various aspects of spacetimes containing compact
objects like black holes and naked singularities. Several well known solutions of the field equations have
been found that describe the geometries outside such objects [1–6], and the success of general relativity as the
theory of classical gravity [7] supports, at this level, the possibility of their existence (see also [8–11]).

Since it is always useful to have a broad perspective of the aim and value of scientific studies, we think it useful
to point out in brief, right at the get-go, why it is interesting to study compact objects, both from a theoretical
and an astrophysical standpoint.

Theoretical studies of the existence, formation, stability and detection of black holes and naked singularities
are of utmost importance towards a proof of the validity or invalidity of the cosmic censorship hypothesis
[12–17]; we discuss these in some detail below. One could also systematically test the black hole “no-hair
theorems” [8, 18] by studying properties of gravitational waves emitted by binaries containing black holes [19]
and also the spectra of accretion discs around black holes [20–23]. Since black holes are, quite uniquely, both
extremely massive and extremely compact, they sit as novel objects of interest at the interface of the theories of
general relativity and of quantum fields, and interesting notions like the black hole information paradox arise
[24]. Analyzing departures from current theoretical expectations of gravitational wave observations could
potentially lead us closer to the deeper UV-complete theory of gravity [25]. The AdS/CFT correspondence
[26], for example, is another avenue of research that is of fundamental importance since it offers a new
perspective on notoriously difficult problems, such as the aforementioned information loss paradox, the nature
of singularities in black holes, and quantum gravity. Very nicely, it goes both ways, and studies of the
characteristic vibrational quasi-normal modes of black holes in the context of the AdS/CFT correspondence
have become a standard tool in considering the near-equilibrium behaviour of gauge theory plasmas with a
dual gravity description [27].

1



2 Chapter 1

On the other hand, old white dwarfs have been used to calibrate the age of the Milky Way galaxy [28] and
of the universe [29]. The first indirect confirmation of gravitational radiation [30, 31], the discovery of the
first extra-solar planetary system [32], and the first detection of gas in a globular cluster [33] are some of
the successes of pulsar physics. The detection of a highly relativistic double neutron star binary system [34]
played a crucial role in predicting the success of gravitational wave detectors by providing a reliable estimate
of the merger rate of such systems. Currently, there is also compelling evidence for the presence of compact
regions in the universe with very large mass, and this is interpreted as strong indirect evidence for the existence
of black holes: the compact object Sagittarius A★ at our Galactic center, with a mass of 4 × 106𝑀⊙ , is the
best example of such an object [35, 36]. Moreover, there is substantial evidence that supermassive black holes
exist at the cores of galaxies [35–41], and studying their properties could potentially yield crucial insight into
how galaxies formed in the early universe. It is also thought that sources of extremely energetic processes like
gamma-ray bursts could be merger events of neutron stars and black holes [42]. In the future, measuring the
shape and size of the shadow and surrounding lensed photon ring could provide yet another test of the black
hole no-hair theorems [43].

Now that we have said that these objects exist, in the sense that the metrics that describe their exterior
geometries are solutions of the field equations, and that it is useful to study them, we are led to engage in
a discussion of how such novel objects may form from gravitational collapse. Such a study is important
because, although these metrics may be solutions of the Euler-Lagrangian field equations, it is important to
check whether or not they can also be constructed within the initial value formulation of general relativity. We
discuss these aspects schematically in Chapter 2.

Such objects may arise as end-states of the catastrophic continual gravitational collapse of massive stars, at the
end of their life-cycles. Having exhausted their internal nuclear fuel, these stars end up as compact stellar-mass
objects. Indeed various instances of black holes and naked singularities forming as a result of gravitational
collapse have been reported [44–51]. It turns out that, in various scenarios, the formation or otherwise of an
event horizon, as well as the actual epoch of horizon formation, are governed by the specific regular initial
conditions from which the collapse evolves, and the final state could be either a black hole or a naked singularity.
In Chapter 2, we review the formation of the Schwarzschild black hole, the Lemaître-Tolman-Bondi black
holes, and of the Lemaître-Tolman-Bondi naked singularities1 [44, 45, 47–50]. Alternatively, clustering of
matter in the central region of a galaxy may generate a massive compact object, which may then grow further
in mass by accretion [52].

From a practical (/conservative) viewpoint, it is useful to pay attention to these objects only if we are reasonably
certain that they may be observed, which is only possible if they are stable (atleast on the relevant dynamical
time-scale). Essentially, instability of an astrophysical object implies transience, and so one must ensure that
the metrics corresponding to realistic astrophysical objects are stable as solutions to the dynamical equations.

Canonically, stability analyses are broadly divided into two categories: linear and non-linear. That is, when
studying the stability of a particular spacetime that forms from some ‘valid’ initial data, one may deform
the initial data by ‘valid’ infinitesimal (linear) or finite (non-linear) perturbations, and ask whether the new
evolutions are ‘close’ to the original spacetime of interest. A precise discussion of these aspects, with
illustrative examples, is the main goal of Chapter 2.

1We denote by Lemaître-Tolman-Bondi black holes those black holes that form from an inhomogeneous initial density configuration,
as opposed to the Datt-Oppenheimer-Snyder black holes. This is a useful distinction to make since Lemaître-Tolman-Bondi black holes
can contain locally-visible naked singularities [47].
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As we shall see in Chapter 2, linear stability amounts to studying ‘small disturbances’ of the exterior geometry
of a black hole or a naked singularity, and checking whether or not they oscillate around the background metric
without causing significant deviations in it, in the same way a mechanical system oscillates around a local
minimum configuration of its potential energy. One can also ask, in similar vein, whether more exotic objects
like boson stars [53], preon stars [54] or superspinars [55] can be stable.

One may restrict to studying linear perturbations that have a harmonic time behaviour (e−i𝜔𝑡 , with𝜔 a constant),
akin to the normal modes of a conservative system, since such an analysis is far simpler. Recognizing the
importance of stablity analyses of spacetimes in general relativity, a study of linear mode stability from the
point of view of metric perturbations was initiated in two seminal papers [56, 57], where a Schrödinger-
like equation for the radial dependence of axial-parity metric perturbations was arrived at, as we will see in
considerable detail in Chapter 2. Since the Kruskal-Szekeres extension of the Schwarzschild spacetime [58, 59]
had not yet been known at the time, the coordinate singularity at the Schwarzschild horizon made it difficult to
ascertain whether or not divergences exhibited by these perturbations at this surface were real. This analysis
was eventually completed in [60], where it was demonstrated that the Schwarzschild black hole spacetime
was indeed mode stable. A Schrödinger-like equation for the radial dependence of polar metric perturbations
was obtained in [61], and a unification of the of stability analyses of the axial-parity and polar-parity metric
perturbations was achieved in [62] (see also [63]), via the discovery of a transformation that connected the
seemingly disparate potentials of these two classes of perturbations. A gauge-invariant formulation of metric
perturbations was later provided in [64], and an alternative approach via the Newman-Penrose [65] formalism
was set up in [66] for the mode analysis of the Schwarzschild spacetime. This was later extended to the Kerr
family of solutions in [67], and the celebrated result regarding the mode stability of Kerr black holes was
obtained in the seminal paper of [68]. Various authors, including us, have since studied the stability of Kerr
naked singularities [69], Kerr superspinars [70, 71] and other objects [27, 72–80].

Questions regarding the genericity of the occurrence of these compact objects which, as we argue in Chapter
2, are essentially concerned with the extent of their (non-linear) stability against finite changes in the initial
data from which they evolve, have been explored extensively, with particular emphasis being laid on the
study of the formation of trapped surfaces, apparent horizons, and event horizons. Powerful results like
the Birkhoff theorem [81], along with various other analytical [82–90] and numerical studies [91–95] have
bolstered our expectation that black holes can, in fact, occur frequently, or equivalently that they do form
generically as endstates of continual gravitational collapse. However, despite significant effort [49, 50, 96–
103], the genericity of evolutions of regular configurations of matter to naked singularities is less clear. That
is, even if naked singularities do form for some particular choice of initial data of gravitational collapse 𝑑
in the space of all allowed initial data D, do they also form for other arbitrary initial data chosen within
some open neighborhood of 𝑑 in D? Further, how is this space of all allowed initial data D partitioned into
regions that produce black holes versus those that generate naked singularities? These are fundamental open
questions in GR and are related to the cosmic censorship hypotheses [12–17], which roughly require a positive
or negative statement regarding whether the set of initial data that eventually lead to naked singularities make
up a ‘sufficiently significant’ portion of the space of all allowed initial data.

Therefore, it becomes clear that a study of the stability of these solutions against changes in initial data, both
linear and non-linear, is of fundamental importance. In Chapter 2, we will discuss first our results on how
near-extremal Kerr superpsinars are in fact (linear) mode stable [71], and also review some of our recent
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(somewhat restrictive) findings on the non-linear stability of the formation process of the Schwarzschild black
hole spacetime against changes in the fluid density initial data [104].

Statements regarding the various notions of stability in general relativity are typically made in its initial
value formulation, and there are several excellent review articles in the literature on the same [105–110].
We propose in Chapter 2 that restating these notions using symplectic geometry earns us substantial insight
since one can then draw formal analogies between the seemingly abstruse notions of stability of spacetimes in
general relativity and the more familiar notions of stability in classical Galilei-Newton mechanics. There is
also traction to be gained in numerical computations of stability analyses of spacetimes with the incorporation
of symplectic integrators. Symplectic integrators possess, as a conserved quantity, a Hamiltonian which
is slightly perturbed from the original one, which is advantageous when computing long-term symplectic
structure-preserving evolutions of complex non-linear Hamiltonian systems (see for example [111]).

Having addressed to some degree the aspects of existence and stability of these compact objects, one must
consider how they may be detected, as alluded to above. The spacetimes of interest here will be the Kerr family
of black holes which, as we have mentioned above, are mode stable; in fact, the non-rotating Schwarzschild
black hole is linearly stable [112]. Additionally, we will also consider the so-called Joshi-Malafarina-Narayan
naked singularities [51, 113], which are expected to form from collapse, and are stable against perturbations
of the fluid’s initial density profile [114].

One may analyse, for example, how light behaves near such compact objects, which forms the central theme
of Chapter 3. The direct evidence for the presence of a black hole requires an actual detection of the event
horizon, the surface that encloses the compact interior of the black hole, and from where no material particles
or light rays can escape. A number of tests have been proposed to confirm the presence of event horizons in
black hole candidates [38–40]. The evidence is strong but, of necessity [41], not conclusive.

With the purpose of strengthening the evidence for the presence of a black hole in Sgr A★, as well as in
the nucleus of the nearby galaxy M87, the event horizon telescope (EHT; [115, 116]), an Earth-spanning
millimeter-wave interferometer, has recently been constructed. While nothing escapes from the interior of a
black hole, the exterior spacetime has a photon sphere which is predicted to create a characteristic shadow-like
image of the radiation emitted by an accretion flow around the black hole [117–119]. The goal of the EHT is to
verify the presence of this shadow at mm wavelengths in the image of Sgr A★, which would add considerably
to the evidence that Sgr A★ is a black hole. Remarkably, EHT has already recorded the first ever image of
a black hole (M87★) this year [120]. In a recent project [121], we showed that some static naked singularity
spacetimes also possess photon spheres and therefore cast shadows, akin to static black holes. Strikingly,
for the models we considered, the shadow and image structures are degenerate for the black hole and naked
singularity case. We discuss these results in Chapter 3 below.

Another avenue with which to study massive compact objects is to study how test objects like stars and pulsars
are influenced by a black hole or naked singularity. For example, it has been ascertained, from monitoring the
motion of stars in the central region of our galaxy, that a large amount of mass, roughly about 4.2 × 106𝑀⊙

[36, 122], is enclosed within a volume of radius smaller than 0.01 pc (see [123, 124]), supporting our belief that
our Galaxy houses a supermassive black hole Sgr𝐴★ at its centre [35, 36, 122]. In our recent work [125], we
considered the effects that the intrinsic gravitomagnetism in the spacetime of a stationary black hole or naked
singularity has on the appearance of a pulsar, and found that the evolution of its beam does in fact pick up clear
tell-tale signatures of the compact object. We discuss our results in Chapter 4 and believe they are particularly

https://eventhorizontelescope.org/
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promising since locating pulsars in the vicinity of black holes has been an active pursuit in astronomy. Again,
the interest in such systems is fuelled by the hope that by studying deviations in the observed frequency of
pulses due to strong gravitational fields, one could study the properties of black holes and eventually even test
general relativity in these strong-curvature regimes [126], which aligns with the theme of our investigations
very nicely. Encouragingly, a magnetar (neutron star with large magnetic field and high rotation frequency)
SGR J1745–2900 has recently been identified in the proximity of Sgr𝐴★[127]. This detection is expected
to yield rich dividends: it offers an unparalleled tool for probing the ionized interstellar medium toward the
galactic center [128] and a possible avenue with which to test quantum gravity effects [129].

Furthermore, one of the desired objectives of X-ray and gamma-ray space telescopes like Fermi [130], and of
large radio telescopes such as the upcoming Square Kilometre Array (SKA; [131, 132]) and the Five-hundred-
meter Aperture Spherical radio Telescope (FAST; [133, 134]) has been to detect more such pulsar-black hole
systems. This is true also of gravitational wave observatories like the Laser Interferometer Gravitational-Wave
Observatory (LIGO; [135]) and the Virgo interferometer [136], and the next generation Laser Interferometric
Space Antenna (LISA; see for example [137]). We discuss where one may find such systems in Chapter 4.

A pulsar, which can be treated effectively as a test spinning particle near a sufficiently massive black hole (for
black hole masses of about 102𝑀⊙ or greater; see for example [138]), is affected in characteristically distinct
ways depending on whether or not the black hole posseses angular momentum. For example, particle orbits
precess due to geodetic precession around a non-spinning Schwarzschild black hole [139], and the rate of the
advance of the periapsis depends only on the mass of the central black hole. The precession of particle orbits
near a spinning Kerr black hole was studied in [117], and it was found there that an additional Lense-Thirring
precession [140] piece arises due to the coupling of the orbital angular momentum of the particle with the
angular momentum of the Kerr black hole. These orbit-precession effects would be experienced by both
spinning and non-spinning test particles, and can be neatly thought of as causing the rotation of the associated
Laplace-Runge-Lenz vector of the test object (see for example [141]). The Lense-Thirring or gravitomagnetic
frame-dragging precession of orbits has been explored in a variety of astrophysically important contexts
including for accretion disc matter [142–144] and for pulsars present in the vicinity of spinning black holes
[145, 146].

In addition to these orbit-precession effects, the spin-axis of a test spinning object could precess, relative to a
fixed observer at infinity. This is evident from the evolution of its intrinsic spin angular momentum, which is
governed by the Fermi-Walker transport law ([147, 148]; see also [149]). The focus of our recent work [125]
was on this particular curious effect of spin-precession on observations of pulsars on circular orbits in binaries
with sufficiently massive black holes so the pulsars may effectively be treated as test objects. Spin-precession
experienced by test spinning objects present near a Schwarzschild black hole was studied in [150], and it
was found notably that when these objects remain at fixed spatial locations, they do not experience these
effects. However, when pulsars move through the curved space (on geodesics) near a Schwarzschild black
hole, they experience non-zero spin-precession. Therefore, spin-precession in a static spacetime is a kinetic
effect, and this geodetic spin-precession depends only on the mass of the central non-spinning black hole [139]
and the properties of motion of the pulsar. However, when in the vicinity of a (rotating) Kerr black hole,
even pulsars that remain spatially-fixed experience non-zero spin-precession [151]. This is due to the intrinsic
gravitomagnetic frame-dragging effects, characteristic of a spinning central mass, that are encoded into the
metric of a stationary spacetime. Essentially, the intrinsic spin angular momentum of the pulsar couples to the

https://www.skatelescope.org/books/
https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
https://www.lisamission.org/news/Papers
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gravitomagnetic field associated with the non-zero spin of the central black hole [152–154]; for a discussion
on gravitomagnetism, we direc tthe reader to see [155–157].

Searching for these characteristic general relativistic couplings by measuring the precession properties of a
gyroscope in earth’s gravitational field was first proposed in [158]. This search was successfully conducted
by Gravity Probe B (GPB; [159]), and data from four gyroscopes of the GPB mission measured (one sigma
results) both a geodetic and a gravitomagnetic frame-dragging frequency of 6601.8 ± 18.3 marc-s yr−1 and
37.2 ± 7.2 marc-s yr−1 respectively (1 marc-s = 4.848 × 10−9 radians). To compare, the general relativity-
predicted values are 6606.1 marc-s yr−1 and 39.2 marc-s yr−1. In recent decades, precession experienced by
both isolated pulsars due to their internal structure [160], and those in binaries has been explored [161, 162].
However, the effect of gravitomagnetic spin-precession in pulsar-black hole systems on pulsar beam profiles
has not been sufficiently well characterized, and this forms the focus of our work [125], which we discuss in
Chapter 4. We note how this problem is complicated by difficulties in (a) evaluating the precession frequency
experienced by pulsars on arbitrary time-like orbits, and in (b) relating statements made in the pulsar-frame
to the frame of an asymptotic spatially-fixed observer. The spin-precession frequency, which is the rate at
which the intrinsic spin-angular momentum or the spin-axis of a pulsar precesses, depends on the properties
of motion of the pulsar, like its distance from the central collapsed object and its four-velocity, as well as
on the characteristics of the central object, like its mass and angular momentum. Employing a completely
covariant formalism, the spin-precession frequency experienced by gyroscopes moving on Killing orbits in
arbitrary stationary spacetimes was calculated in [151], which will be the orbits of choice in the Chapter 4.
It should be noted that major leaps in overcoming both of the hurdles mentioned above have come recently
in two seminal papers [153, 163], where gyroscopic spin-precession along unbound equatorial plane orbits
and along general timelike geodesics in the Kerr spacetime respectively was analysed. However, we will not
attempt to go through this material here.

We live in exciting times to be studying compact objects, both theoretically and via observations, courtesy of
various forward-looking large-scale astronomy missions such as LIGO, Virgo, LISA, EHT, SKA, FAST and
Fermi that are actively looking to detect them and study their properties.
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Stability in General Relativity

2.1 Outline

When describing gravity in the absence of matter, the only dynamical entity is the metric g of the spacetime,
and the usual approach to treating general relativity (GR) as a field theory is based on the covariant Lagrangian
formulation. The Einstein-Hilbert action for this system is given as,

𝑆EH =
1
2

∫ √︁
−|𝑔 |d4𝑥 𝑅, (2.1.1)

where |𝑔 | ≡ det(𝑔`a) is the determinant of the metric tensor, 𝑅 is the associated Ricci scalar and we have
used Geometrized units, 8𝜋𝒢 = 𝑐 = 1. Our convention for the metric signature will be (−, +, +, +). With
the introduction of the associated Christoffel connections Γ

𝜌
`a = 1

2𝑔
𝜌𝛼

(
2𝑔𝛼(`,a) − 𝑔`a,𝛼

)
, the Riemann

tensor 𝑅𝜌
𝜎`a = 2

(
Γ
𝜌

𝛼 [`Γ
𝛼
a ]𝜎 − Γ

𝜌

𝜎 [`,a ]

)
and the Ricci tensor 𝑅`a = 𝑅

𝜌
`𝜌a , the Ricci scalar is defined as

𝑅 = 𝑔`a𝑅`a . Then the governing Euler-Lagrange equations of motion can be derived as being,

𝐺`a = 0, (2.1.2)

where in the above we have introduced the trace-reversed Ricci tensor G, which is more famously known
as the Einstein tensor, as 𝐺`a = 𝑅`a − 1

2𝑔`a𝑅. The square brackets denote antisymmetrization in the
outermost indices 𝐴[`· · ·a ] =

1
2
(
𝐴`· · ·a − 𝐴a · · ·`

)
and round brackets mean symmetrization similarly defined,

𝑆 (`...a) =
1
2
(
𝑆`· · ·a + 𝑆a · · ·`

)
. The above set of equations are called the vacuum Einstein field equations (EFEs)

and metrics g that satisfy these equations are called the vacuum solutions of GR. The EFEs are a set of
non-linear, partial differential equations that are essentially hyperbolic (wave-like) in nature (see [105] for
details).

When matter is introduced into the mix, the full action of theory is given by the Einstein-Hilbert term plus a
matter term 𝐿M as,

𝑆 =

∫ √︁
−|𝑔 |d4𝑥

(
𝑅

2
+ 𝐿M

)
. (2.1.3)

The corresponding Euler-Lagrange equations of motion are then given as,

𝐺`a = 𝑇`a , (2.1.4)

9
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where in the above we have introduced the energy-momentum-stress tensor T of the matter fields as,

𝑇`a = 𝑔`a𝐿M − 2
𝛿𝐿M

𝛿𝑔`a
. (2.1.5)

See for example [106, 164] for the expressions of energy-momentum-stress tensors associated with different
types of fields. As an example, the reader may also see §2.8 below, where dust (zero-pressure perfect fluid) is
the matter model of choice. It will presently become evident why this is an interesting system to study.

Exact solutions of the EFEs (2.1.4) provide important insight into how this “new theory” of classical gravity
modifies our description of nature. For example, the Schwarzschild metric [1] captures the geometry outside
an isolated massive object, and it can be shown for example that the continual gravitational collapse of a
homogeneous and isotropic cloud of dust terminates in the formation of a Schwarzschild black hole [44]. Now,
whether or not it forms similarly as the end-state of collapse processes when the initial matter configuration is
modified must be investigated. This is of vital importance since if the formation process is not stable under
even infinitesimal perturbations, then intuition that is built based on these models is not useful. Futher, in the
case that it is unstable under only finite perturbations, it would be immensely useful to characteristize the sizes
and nature of these perturbations, for obvious reasons. Indeed these issues have been studied rigorously in
this context over the years [45, 49, 50, 99–101], and such questions have also been of great interest in broader
contexts to the general relativity and astrophysics community. Stability analyses have been canonically been
organized into two categories, based on the size of the perturbation, into linear and non-linear stability analyses,
for when the perturbing field is infinitesimal or finite respectively.

Roughly, the question of whether a stationary spacetime (M, g) is linearly stable can be summarized as
follows. If one adds to the metric g, an infinitesimal perturbation h such that the perturbed metric ḡ = (g +h)
also satisfies the Einstein field equations, then does h remaining bounded to its initial data, by some suitable
norm? If this statement holds true for arbitrary regular initial data for h, then g is linearly stable as an solution
to the EFEs. One can also study the stronger statement of asymptotic linear stability, i.e. whether or not
solutions h asymptotically decay.

In particular, if for some spacetime (M, g) one can find a time-coordinate 𝑡 such that all metric components
are independent of 𝑡, then such a solution of the EFEs is said to be stationary1. These sorts of time-invariant
solutions of the EFEs correspond to equilibrium points (in the phase space of GR), in the usual sense, and one
can study their stability against harmonic perturbations, i.e. linear perturbations with the time dependence of
the form 𝑒i𝜔𝑡 , akin to a normal mode analysis. This brings us to a discussion of a far simpler, yet sufficiently
powerful, linear mode stability analysis of a stationary spacetime: do the linearized equations admit solutions
with frequencies𝜔, all restricted to the upper half plane?2 This corresponds to all modes dying off as 𝑡 → +∞.
If yes, then g is mode-stable as an equilibrium solution to the EFEs. We think it relevant to mention here that the
well known Kerr-Newman family of black hole metrics [1, 2, 4, 5] comprises of stationary solutions; therefore,
setting up mode stability analyses of stationary solutions in general relativity is of immediate astrophysical
interest. It is also clear that a mode stability analysis is superseded by a linear stability analysis, since one is
only interested in a specific type of linear perturbations when studying mode stability.

1Equivalently, a spacetime (M, g) is defined to be stationary if it admits a time-like Killing vector [10]. That is, if £ξg = 0 for ξ a
time-like vector, then g is an equilibrium solution. Here, £ represents the Lie derivative.

2Note that sometimes the following convention for defining the harmonic form is used, 𝑒−i𝜔𝑡 . In this case, the frequencies must lie
naturally in the lower half plane.



Chapter 2 11

Now, in order to study the linear stability of a solution, one must obtain the evolution equations for the metric
perturbation h, and this is the program of §2.2 and §2.3. The strategy we will use to obtain the equations of
motion for h is straightforward. We write down the EFEs for the full perturbed metric ḡ, and subtract from
it the EFEs for the ‘background metric’ g. It will then become clear that the smallness of the perturbation
h will ensure that it satisfies a linearized version of the field equations. At this point we must note here that
we will not actually attempt to solve the linearized equations for arbitrary metric perturbations h. This is in
general a difficult task as can be seen from the seminal works [165, 166] and [112] on the linear stability of the
Minkowski and Schwarzschild spacetimes respectively. We will instead use the linearized equations reported
in §2.2 and §2.3 to review the mode stability of the Schwarzschild black hole in §2.4 in some detail. After
these pedagogical sections, we will finally discuss our results on the mode stability of near-extremal Kerr
superspinars in §2.5. We will make some concise comments on the non-trivial difference between a mode
stability analysis and a full linear stability analysis in GR, in §2.6.

We will suspend a discussion on the slightly more nuanced notions of a non-linear stability analysis of a
spacetime until we reach §2.7, after we have briefly addressed the need for, and the framework of, the initial
value formulation of GR. We end this chapter with a discussion on our partial results on the non-linear stability
of the Schwarzschild black hole against fluid density perturbations, as a demonstrative example, in §2.8.

2.2 Perturbations of the Minkowski Spacetime3

Before we enter into a derivation of the dynamical equations that govern the time evolution of infinitesimal
(linear) metric perturbations of arbitrary vacuum solutions to the Einstein field equations, it is pedagogically
simpler to derive them for the Minkowski solution, which we review in this section.

We add to the Minkowski metric η an arbitrary “small” metric perturbation h,

�̄�`a = [`a + ℎ`a , ∥ℎ`a ∥ ≪ 1, (2.2.1)

such that ḡ is also a solution of the EFEs and ∥ℎ`a ∥ denotes the magnitude of a typical non-zero component
of h. Then the question of whether or not the Minkowski metric is linearly stable as a stationary solution of
the vacuum EFEs, as mentioned above, reduces to a study of whether or not h remains bounded for all forward
time, for arbitrary initial data. Indeed it turns out that this is the case, as was shown in the seminal work of
[165], which we will not go into here.

It is to be noted that since Lorentzian metrics are not positive definite, there is no natural norm which captures
the notion of “smallness” of a metric tensor. However an adequate definition of smallness in this context is
that the components of h be much smaller than unity as we have indicated, which applies if we work in some
global inertial coordinate system of η, in which it takes its canonical form [`a = diag(−1, +1, +1, +1). Note
that this smallness-condition on the metric perturbation doesn’t really make sense in coordinates that are not
(approximately) Cartesian4.

3This section follows [8, 10, 74, 167–169].
4One can see the related notions of Riemann normal or holonomic coordinates [170]. A local condition for a basis {e0, e1 · · · e𝑛 }

to be holonomic is that all mutual Lie derivatives vanish, [e𝑖 , e 𝑗 ] = £e𝑖e 𝑗 = 0.
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Now, in such a weak-field situation, one can expand the field equations for ḡ in powers of h, and retain terms
that are at most linear in h; this is the framework of the linearized theory of gravity5. Since everything
(Christoffels, Riemann, Ricci) vanishes for the present choice of the background stationary metric g = η,
writing out the EFEs for the perturbed metric will evidently be equivalent to obtaining the linearized equations
of motion that govern the evolution of h.

To obtain the Einstein tensor Ḡ for the perturbed metric ḡ, we require its inverse �̄�`a �̄�a𝜌 = 𝛿
`
𝜌. That is,

ḡ−1 = (η + h)−1 = η−1
(
1 + η−1h

)−1
= η−1

[
1 − η−1h +

(
η−1h

)2
−

(
η−1h

)3
+ · · ·

]
. (2.2.2)

In components, we may write,

�̄�`a = [`𝛼
[
𝛿 a
𝛼 −

(
η−1h

) a

𝛼
+

(
η−1h

) 𝛽

𝛼

(
η−1h

) a

𝛽
−

(
η−1h

) 𝛽

𝛼

(
η−1h

) 𝛾

𝛽

(
η−1h

) a

𝛾
+ · · ·

]
,

= [`𝛼
[
𝛿 a
𝛼 − ℎ𝛼𝛽[𝛽a + ℎ𝛼𝛾[𝛾𝛽ℎ𝛽𝛿[𝛿a − ℎ𝛼𝛾[𝛾𝛽ℎ𝛽𝛿[𝛿𝛾ℎ𝛾𝜖 [𝜖 a + · · ·

]
,

= [`a − ℎ`a + ℎ`𝛽ℎ a
𝛽 − ℎ`𝛽ℎ 𝛾

𝛽
ℎ a
𝛾 + · · · . (2.2.3)

A point to note is that in writing the last equation above, we have raised h using the background Minkowski
metric η as, ℎ`a ≡ [`𝛼ℎ𝛼𝛽[

𝛽a . This is because in this linearized theory, as noted above, we can discard
terms that are of higher order in h, without much loss of accuracy. We will in fact similarly raise and lower
indices using η since the corrections would be of higher order in the perturbation otherwise6. Therefore, to
leading order in h, the inverse of the perturbed metric is clearly just,

�̄�`a ≈ [`a − ℎ`a . (2.2.4)

The associated Christoffel symbols Γ̄ for the perturbed metric ḡ are then given as,

Γ̄
𝜌
`a =

1
2
�̄�𝜌𝜎

(
2�̄�𝜎 (`,a) − �̄�`a,𝜎

)
≈ 1

2
([𝜌𝜎 − ℎ𝜌𝜎)

(
2ℎ𝜎 (`,a) − ℎ`a,𝜎

)
≈ 1

2
[𝜌𝜎

(
2ℎ𝜎 (`,a) − ℎ`a,𝜎

)
.

(2.2.5)

Since the connection coefficients are already first order in h, the only contribution to the Riemann tensor
(which is structurally of the form ΓΓ − ΓΓ + 𝜕Γ − 𝜕Γ) will come from the derivatives of the Γ’s and not the
Γ2 terms. Now, lowering an index for convenience, with

Γ̄𝜌`a = [𝜌𝛼Γ̄
𝛼
`a = ℎ𝜌(`,a) −

1
2
ℎ`a,𝜌, (2.2.6)

we obtain the (all-lowered) Riemann tensor corresponding to the perturbed metric ḡ as,

�̄�𝜌𝜎`a = [𝜌𝛼 �̄�
𝛼
𝜎`a = −2[𝜌𝛼Γ̄𝛼

𝜎 [`,a ] = −2ℎ [` [𝜌,𝜎 ]a ] . (2.2.7)

5Instead of studying the stability of the Minkowski spacetime, this theory is infact used as an important theory in its own right to
describe astrophysical situations when the full spacetime metric ḡ deviates only slightly from the flat one η, for example, to describe the
gravitational field of the solar system, where ∥ℎ`a ∥ ∼ 10−6 [8].

6It is to be noted that �̄�`a = [`a − ℎ`a is the full perturbed inverse metric, as opposed to [`𝛼�̄�𝛼𝛽[
𝛽a , and this will be the only

exception to the notational convention adopted in this section.
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We prefer to write down the linearized Riemann tensor in this form (2.2.7) to make the symmetries in its
indices obvious. The linearized Ricci tensor �̄�`a = [𝜌𝜎 �̄�𝜌`𝜎a then becomes,

�̄�`a =
[𝜌𝜎

2
(
−ℎ𝜌𝜎,a` + ℎ𝜌a,𝜎` + ℎ`𝜎,a𝜌 − ℎ`a,𝜎𝜌

)
= ℎ

𝜌

(`,a)𝜌 −
1
2
ℎ,`a −

1
2
□ℎ`a , (2.2.8)

where we have introduced ℎ ≡ [𝜌𝜎ℎ𝜌𝜎 and □ ≡ 𝜕𝜎𝜕𝜎 = −𝜕2
𝑡 + 𝜕2

𝑥 + 𝜕2
𝑦 + 𝜕2

𝑧 , the flat-space d’Alembertian7.
The linearized Ricci scalar �̄� = [`a �̄�`a is of course,

�̄� = ℎ
`a
,`a − □ℎ, (2.2.9)

and the linearized Einstein tensor corresponding to the perturbed metric ḡ is,

�̄�`a = �̄�`a −
1
2
[`a �̄� = ℎ

𝜌

(`,a)𝜌 −
1
2
ℎ,`a −

1
2
□ℎ`a −

1
2
[`aℎ

𝜌𝜎
,𝜌𝜎 + 1

2
[`a□ℎ. (2.2.10)

Finally, the linearized Einstein’s equations �̄�`a = 𝑇`a for the perturbed metric ḡ are,

ℎ
𝜌
`,a𝜌 + ℎ𝜌a,`𝜌 − ℎ,`a − □ℎ`a − [`aℎ𝜌𝜎,𝜌𝜎 + [`a□ℎ = 2𝑇`a , (2.2.11)

where T̄ is the energy-momentum tensor that generates the perturbationh. In particular, the vacuum linearized
EFEs (i.e., for T̄ = 0) are simply �̄�`a = 0,

ℎ
𝜌

(`,a)𝜌 −
1
2
ℎ,`a −

1
2
□ℎ`a = 0. (2.2.12)

Further, it can generally (non-vacuum cases also) be seen by direct computation that the contracted Bianchi
identity reduces to [172],

�̄� ,a
`a = 0, (2.2.13)

and so, with equation 2.2.11, it is evident that the conservation equations become,

𝑇 ,a
`a = 0. (2.2.14)

The linearized equations (2.2.11) form a system of ten second-order, linear partial differential equations for
ten variables h in terms of the sources T̄ . It is tempting to try to solve for h but this is not yet possible
since a choice of coordinate system has not yet been made; It is not hard to see why this would be important.
Deviations h in the background Minkowski metric η could arise because the spacetime is genuinely perturbed
due, for example, to the propagation of a small amount matter or of a weak-electromagnetic or -gravitational
wave in it. Alternatively, under a small coordinate transformation of the sort, x → x + ξ (with ∥b` ∥ ≪ 1),
the flat-space metric tensor would transform in general as, η → η + h, causing the metric to appear to be
perturbed. Furthermore, there may be other coordinate systems in which the metric can still be written as the
Minkowski metric plus a small perturbation, but the perturbation will be different. Now, since the description
of the equations of motion of gravity is independent of the choice of coordinate system, we recognise such
coordinate transformations (or equivalently, infinitesimal diffeomorphisms) as being a gauge symmetry of the
linearized theory [8, 10, 167, 172]. We will address this issue and demonstrate a popular gauge-fixing choice
in the following subsection.

7Since we use η to raise and lower indices, remember that spatial indices can be written either in the ‘up’ position or the ‘down’
position without changing the value of a quantity: 𝑓 𝑥 = 𝑓𝑥 . Raising or lowering a time index, by contrast, switches sign: 𝑓 𝑡 = − 𝑓𝑡 .
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2.2.1 Gauge Considerations

We have indicated already that there is a certain ambiguity in identifying the perturbed spacetime with the
background spacetime, and this ambiguity may be expressed in terms of a gauge transformation. Now, since a
gauge theory represents physically distinct states of a dynamical system as an equivalence class of detailed local
field configurations, with any two such configurations in the same equivalence class being related by a gauge
transformation, most of the quantitative physical predictions of a gauge theory can only be obtained under
a coherent prescription for suppressing or ignoring these unphysical degrees of freedom. This prescription
involves making a gauge choice, and a quick description of an example for the same follows.

Although the default notation in this thesis is the elegant one of Carroll [167] (and Schutz [171], except
for the placement of the indices, which there is always north by south-east for two-tensors for example),
where accents are placed on the indices, we depart from convention in this subsection8. Let us consider two
coordinate systems 𝑥` and 𝑥 ′`, that differ from each other by a very small amount b` as,

𝑥 ′` = 𝑥` + b` (𝑥), ∥b` ∥ ≪ 1. (2.2.15)

Then, inverting the above to linear order in ξ as 𝑥` = 𝑥 ′` − b` (𝑥 ′), we have the inverse Jacobian,

𝜕𝑥𝛼

𝜕𝑥 ′`
= 𝛿𝛼` − b𝛼,` . (2.2.16)

Armed with this Jacobian, we can now find the components of the metric ḡ = η + h in these two systems to
be related as,

�̄�′`a =
𝜕𝑥𝛼

𝜕𝑥 ′`
𝜕𝑥𝛽

𝜕𝑥 ′a
�̄�𝛼𝛽 =

(
𝛿𝛼` − b𝛼,`

) (
𝛿
𝛽
a − b𝛽,a

) [
[𝛼𝛽 + ℎ𝛼𝛽

]
,

≈ �̄�`a − 2b (`,a) . (2.2.17)

Subtracting an η from both sides above, we can find the change in the metric perturbation h due to the (small9)
coordinate transformation given in equation 2.2.15 to be,

Δℎ`a = ℎ′`a − ℎ`a = −2b (`,a) , (2.2.18)

where we have defined h′ = ḡ′ − η. It must be noted that to within the precision of the linearized theory, the
functional forms of all other scalars, vectors and tensors undergo no changes (see for example Box 18.2 of
[8]). Clearly, since perturbing coordinate systems should not affect physics or more concretely the spacetime
geometry, we immediately recognize that a change of the form,

ℎ`a → ℎ`a − 2b (`,a) (2.2.19)

is simply a gauge transformation. Note that this gauge transformation can be re-expressed in its more familiar
form using a Lie-derivative as,

ℎ`a → ℎ`a + £ξ[`a . (2.2.20)

8In particular, equation 2.2.17 looks ridiculous/incomprehensible in the Schutz-Carroll notation.
9Small enough to leave ∥ℎ′`a ∥ ≪ 1.



Chapter 2 15

See for example [10, 167, 172] for nice geometric interpretations of this equation. Now, it can be checked
explicitly that although the metric and the associated Christoffel symbols transform under a small coordinate
transformation (2.2.15), the Riemann tensor is left unchanged. Therefore, as expected, the linearized Ein-
stein tensor and hence the linearized equations of motion are indeed invariant under a gravitational gauge
transformation (2.2.19).

One way to cope with the ambiguity introduced due to gauge degeneracy is to simply choose a gauge. This,
in GR, is achieved by fixing the coordinate system. A popular choice is the harmonic coordinate system,

□𝑥` = 0, (2.2.21)

which reduces to,

0 = [𝜌𝜎𝜕𝜌𝜕𝜎𝑥
` − [𝜌𝜎Γ_

𝜌𝜎𝜕_𝑥
` = −[𝜌𝜎Γ_

𝜌𝜎 = −[𝜌𝜎[_𝛿
(
ℎ𝛿 (𝜌,𝜎) −

1
2
ℎ𝜌𝜎,𝛿

)
; (2.2.22)

that is,
ℎ
_𝜌
,𝜌 −

1
2
ℎ,_ = 0. (2.2.23)

This condition is known as the Lorentz gauge, and goes by many other names including the Einstein gauge,
Hilbert gauge, de Donder gauge, and Fock gauge.

It is worth noting that in flat space, Cartesian coordinates, in which Γ
𝜌
`a = 0 (and therefore trivially satisfy

equation 2.2.22), are harmonic coordinates.

Now, in this gauge, the linearized Einstein field equations 2.2.11 simplify to,

□ℎ`a −
1
2
[`a□ℎ = −2𝑇`a . (2.2.24)

The linearized equations of motion (2.2.24) along with the gauge condition (2.2.23) uniquely determine the
evolution of a perturbation of the Minkowski spacetime. Also, the vacuum

(
𝑇`a = 0

)
linearized equations

�̄�`a = 0 in particular, in this choice of gauge, become simply,

□ℎ`a = 0. (2.2.25)

2.2.2 An Alternative Viewpoint of this Linearized Theory

This linearized theory can be thought of as describing the theory of a symmetric two-tensor field h propagat-
ing10 in vacuum i.e., on a flat background spacetime [10, 167]. This theory is Lorentz invariant in the sense
of special relativity i.e., h transforms as a tensor under Lorentz transformations, 𝑥`′

= Λ
`′
`𝑥

`, as11,

ℎ`′a′ = Λ
`

`′ ℎ`aΛ
a
a′ . (2.2.26)

10It is to be noted that the metric perturbation h encapsulates gravitational waves, but contains additional, non-radiative degrees of
freedom as well.

11However, under careful scrutiny, one finds that h does not actually transform as a tensor under general coordinate transformations
[168], and things are as they should be.
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Furthermore, the Einstein tensor �̄� corresponding to the perturbed metric (2.2.10) can be obtained by varying
the Fierz-Pauli Lagrangian given below w.r.t. ℎ`a [167, 172, 173],

𝐿 =
1
4
ℎ`a,𝜎ℎ

`a,𝜎 − 1
2
ℎ`a,𝜎ℎ

𝜎a,` − 1
4
ℎ𝜎ℎ

,𝜎 + 1
2
ℎ,𝜎ℎ

a𝜎
,a , (2.2.27)

lending credibility to this viewpoint.

2.2.3 The Trace-Reversed Perturbation Variable

As is now standard, we can introduce the trace-reversed perturbation variable h̄ as,

ℎ̄`a = ℎ`a −
1
2
[`aℎ. (2.2.28)

This simplifies considerably the form of the linearized EFEs (2.2.11), which contains six terms on the left.
That is, by substituting12 ℎ`a = ℎ̄`a − 1

2[`a ℎ̄ in equation 2.2.11, we obtain,

ℎ̄
𝜌
`,a𝜌 + ℎ̄𝜌a,`𝜌 − □ℎ̄`a − [`a ℎ̄𝜌𝜎,𝜌𝜎 = 2𝑇`a . (2.2.29)

Further, we see that the gauge transformation (2.2.18) in terms of this variable is,

ℎ̄′`a =ℎ′`a −
1
2
[`aℎ

′,

=ℎ`a − 2b (`,a) −
1
2
[`aℎ + [`ab𝜌,𝜌 . (2.2.30)

This is just,
Δℎ̄`a = ℎ̄′`a − ℎ̄`a = −2b (`,a) + [`ab𝜌,𝜌, (2.2.31)

and the connection to the Lorentz gauge of electromagnetism also looks much more suggestive when equation
2.2.23 is rewritten in terms of h̄ as13,

ℎ̄
`𝛼
,𝛼 = 0. (2.2.32)

Now, in this gauge, the full linearized field equations (2.2.29) become,

□ℎ̄`a = −2𝑇`a , (2.2.33)

from which the vacuum equations are seen to be,

□ℎ̄`a = 0. (2.2.34)

For completeness, let us also suppose we have on our hands a metric perturbation h̄ does not satisfy the
Lorentz gauge (2.2.32), then we can always rewrite it as h̄′ so that now it does,

0 = ℎ̄
′`𝛼

,𝛼 = ℎ̄
`𝛼
,𝛼 − □b` − b𝛼,`,𝛼 + b𝜌,𝛼,𝜌 . (2.2.35)

12From equation 2.2.28, it is clear that ℎ̄ = [`a ℎ̄`a = −ℎ since [`a[`a = 4 in four-dimensions.
13Remember that in electromagnetism the field strength 𝐹`a = −2𝐴(`,a) is left unchanged under the gauge transformation 𝐴` →

𝐴` + 𝜕`_, and a popular gauge choice is the Lorentz gauge, 𝐴𝛼
,𝛼 = 0.
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That is, we can put any metric perturbation into the Lorentz gauge by performing an infinitesimal coordinate
transformation using ξ which satisfies,

□b` = ℎ̄
`𝛼
,𝛼 . (2.2.36)

The amount of gauge freedom has now been reduced from four freely-specifiable functions of four variables
to four functions of four variables that satisfy the homogeneous wave equation □b` = 0, or equivalently, to
eight freely-specifiable functions of three variables on a Cauchy hypersurface14[168].

We have now derived the linearized equations of motion for an arbitrary metric perturbation of the Minkowski
solution, and have also discussed associated gauge-related aspects. We will however not use these equations to
find explicit solutions here. One can look at any standard treatment [8, 167, 168] to obtain gravitational waves
propagating on the Minkowski background from these equations, for example. However, our primary aim here
was to set up the framework in which to study the linear stability of the Minkowski spacetime, which we have
now done, and we direct the reader to the see the works of [165, 166] for a proof of the same; as mentioned
earlier, a description of this analysis is beyond the scope of this thesis. We will now develop quickly the
linearized theory on a curved background spacetime following [10, 168, 172], and see that many of the results
from this section carry over with slight modifications. We will again not study the most general solutions to
the linearized equations, instead choosing to restrict to those that are harmonic in nature, i.e. we will consider
in particular linear-mode stability. A mode stability analysis of a stationary solution of the vacuum EFEs
is typically sufficient for most astrophysical purposes. Of course, a full linear stability analysis is far more
powerful and equally important, but the inherent difficulty involved dissuades one from attempting to study
these aspects in full generality for most spacetimes.

2.3 Perturbation Theory of Curved Vacuum Spacetimes15

Having set up the perturbation theory of the Minkowski spacetime, we will consider now small metric
perturbations h around arbitrary stationary solutions g such that,

�̄�`a = 𝑔`a + ℎ`a , ∥ℎ`a ∥ ≪ ∥𝑔`a ∥, (2.3.1)

is also a solution of the field equations. It should be noted that this analysis inherently uses a coordinate system
that allows the metric coefficients to be split as above. Now, due to the smallness of typical components of
h relative to the components of the background g, and since we want to set up the framework of a linearized
theory, we can raise and lower indices with g. Therefore, we can write immediately the inverse of the perturbed
metric to leading order in the perturbation h as,

�̄�`a = 𝑔`a − ℎ`a , (2.3.2)

14One can choose initial data for ξ and its normal derivative on any Cauchy hypersurface, and solve the corresponding initial value
problem.

15This section is based on [10, 168].
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where now ℎ`a = 𝑔`𝛼ℎ𝛼𝛽𝑔
𝛽a . Let us now look at the Christoffel symbols associated with the full metric �̄�,

Γ̄
𝜌
`a =

1
2
�̄�𝜌𝛼

(
2�̄�𝛼(`,a) − �̄�`a,𝛼

)
=

1
2
(𝑔𝜌𝛼 − ℎ𝜌𝛼)

(
2𝑔𝛼(`,a) + 2ℎ𝛼(`,a) − 𝑔`a,𝛼 − ℎ`a,𝛼

)
,

= Γ
𝜌
`a +

1
2
𝑔𝜌𝛼

(
2ℎ𝛼(`,a) − ℎ`a,𝛼

)
− 1

2
ℎ𝜌𝛼

(
2𝑔𝛼(`,a) − 𝑔`a,𝛼

)
+𝑂 (h2),

≈ Γ
𝜌
`a +

1
2
𝑔𝜌𝛼

(
2ℎ𝛼(`,a) − ℎ`a,𝛼

)
− 1

2
𝑔𝜌𝛽ℎ𝛽𝜎𝑔

𝜎𝛼
(
2𝑔𝛼(`,a) − 𝑔`a,𝛼

)
,

≈ Γ
𝜌
`a +

1
2
𝑔𝜌𝛼

(
2ℎ𝛼(`,a) − ℎ`a,𝛼

)
− 1

2
𝑔𝜌𝛼ℎ𝛼𝜎𝑔

𝜎𝛽
(
2𝑔𝛽 (`,a) − 𝑔`a,𝛽

)
,

≈ Γ
𝜌
`a +

1
2
𝑔𝜌𝛼

(
2ℎ𝛼(`,a) − ℎ`a,𝛼

)
− 𝑔𝜌𝛼ℎ𝛼𝜎Γ

𝜎
`a . (2.3.3)

Now, with the introduction of “∇ = |” to denote the covariant derivative relative to the background g following
[8], we note that,

ℎ𝛼`,a = ℎ𝛼` |a + Γ𝜎
𝛼aℎ𝜎` + Γ𝜎

`aℎ𝛼𝜎 , (2.3.4)

ℎ𝛼a,` = ℎ𝛼a |` + Γ𝜎
𝛼`ℎ𝜎a + Γ𝜎

a`ℎ𝛼𝜎 ,

−ℎ`a,𝛼 = − ℎ`a |𝛼 − Γ𝜎
`𝛼ℎ𝜎a − Γ𝜎

a𝛼ℎ`𝜎 ,

and so, we can write,
2ℎ𝛼(`,a) − ℎ`a,𝛼 = 2ℎ𝛼(` |a) − ℎ`a |𝛼 + 2ℎ𝛼𝜎Γ

𝜎
`a . (2.3.5)

Therefore, the first-order correction δ𝚪 to the Christoffel symbols due to the metric perturbation can be
expressed elegantly from equation 2.3.3 as,

𝛿Γ𝜌`a ≡ Γ̄𝜌`a − Γ𝜌`a = ℎ𝜌(` |a) −
1
2
ℎ`a |𝜌 . (2.3.6)

It is to be noted that (as the bold-faced notation used above already suggests) δ𝚪 is a genuine tensor.

Now, the derivation of the the linearized EFEs for h proceeds as before. Most equations from §2.2 continue to
apply with the old background η being replaced by the new background g, and with partial derivatives being
replaced by covariant derivatives w.r.t. the background, as has been demonstrated in writing equation 2.3.6.

We can obtain the linearized Riemann tensor 𝛿𝑅𝜌𝜎`a by simply evaluating the perturbed Riemann tensor
�̄�𝜌𝜎`a (corresponding to the perturbed metric �̄�) in a coordinate system in which the background connections
vanish Γ

𝜌
`a = 0, so that ∇𝑎 = 𝜕𝑎, and16,

�̄�𝜌𝜎`a = 𝑅𝜌𝜎`a − 𝛿Γ𝜌𝜎 [`,a ] +𝒪(h2). (2.3.7)

Then, keeping terms that are only linear in the perturbation, equation 2.3.7 for general coordinate systems,
from the principle of general covariance, can be written as,

𝛿𝑅𝜌𝜎`a ≡ �̄�𝜌𝜎`a − 𝑅𝜌𝜎`a = −2𝛿Γ𝜌𝜎 [` |a ] = −2ℎ [` [𝜌 |𝜎 ]a ] − ℎ𝜌𝜎 | [`a ] . (2.3.8)

16The mileage that this approach gives can be seen simply as follows. The type of terms to be found in the perturbed Riemann (to
linear order in the perturbation variable) are, R̄ ∼ 𝜕Γ̄ + Γ̄Γ̄ ∼ 𝜕Γ + 𝜕δ𝚪 + ΓΓ + (δ𝚪)Γ + Γ (δ𝚪) ∼ R + 𝜕δ𝚪 + (δ𝚪)Γ + Γ (δ𝚪) . If we
work in a coordinate system in which Γ = 0, then the last two terms simply drop out and we see immediately what the structure of the
linearized Riemann δR ≡ R̄ −R must be. Also, one can see heuristically from equation 2.3.4 how 𝜕δ𝚪 → ∇δ𝚪 in general coordinate
systems (see for example [74]).
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Note that this last term on the R.H.S. above did not arise previously when we were writing the linearized EFEs
around a flat backgrounds (i.e., for g = η) since partial derivatives commute. Now, we can find the linearized
Ricci tensor 𝛿𝑅`a = 𝑔𝜌𝜎𝛿𝑅𝜌`𝜎a and the linearised Ricci scalar 𝛿𝑅 = 𝑔`a𝛿𝑅`a respectively to be,

𝛿𝑅`a = ℎ
𝜌

(` |a)𝜌 −
1
2
ℎ |`a −

1
2
□𝑔ℎ`a , and 𝛿𝑅 = ℎ

`a

|`a − □𝑔ℎ, (2.3.9)

where in the above we have introduced ℎ ≡ 𝑔𝜌𝜎ℎ𝜌𝜎 and □𝑔 ≡ ∇𝜎∇𝜎 . The vacuum linearized Einstein’s
equations, 𝛿𝑅`a = 0, are then given as (cf. equation 2.2.12),

ℎ
𝜌

(` |a)𝜌 −
1
2
ℎ |`a −

1
2
□𝑔ℎ`a = 0. (2.3.10)

Now, as above (2.2.28), if we introduce the trace-reversed perturbation variable as,

ℎ̄`a = ℎ`a −
1
2
𝑔`aℎ, (2.3.11)

we can rewrite the vacuum linearized EFEs (2.3.10) as,

0 = 2𝛿𝐺`a = ℎ̄
𝜌

` |a𝜌 + ℎ̄
𝜌

a |`𝜌 − □𝑔 ℎ̄`a − 𝑔`a ℎ̄
𝜌𝜎

|𝜌𝜎 + 2𝑅𝜌a`𝜎 ℎ̄
𝜌𝜎 . (2.3.12)

On comparision with equation 2.2.29, we see the last term on the R.H.S. as arising due to the curvature of the
background spacetime.

If we specialise the gauge-choice from the Lorentz gauge (which is also called transverse condition; compare
with equation 2.2.32) and require further that the trace of the perturbation also vanish ℎ̄ = 0, i.e. if we work
in the transverse-traceless gauge,

ℎ̄
`𝛼

|𝛼 = ℎ̄ = 0, (2.3.13)

the linearized vacuum EFEs (2.3.12) reduce to,

□𝑔 ℎ̄`a − 2𝑅𝜌a`𝜎 ℎ̄
𝜌𝜎 = 0. (2.3.14)

2.3.1 Existence of the Transverse-Traceless Gauge

Under a small coordinate transformation (cf. equation 2.2.15),

𝑥 ′` = 𝑥` + b` (𝑥), ∥b` ∥ ≪ 1, (2.3.15)

the metric perturbation h and its trace ℎ transform as,

ℎ`a → ℎ′`a = ℎ`a − 2b (` |a) , (2.3.16)

ℎ → ℎ′ = ℎ − 2b`|` .

Under this gauge transformation, the divergence of the trace-reversed perturbation variable transforms as [168],

ℎ̄
′`a
|` = ℎ̄

`a

|` − □𝑔ba . (2.3.17)
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The condition that the gauge vector ξ must satisfy so a perturbation h̄ that does not satisfy the transverse
condition can be (gauge) transformed to another h̄′ which does, i.e., ℎ̄′`a|a = 0, can be obtained from the
equation above to be (cf. equation 2.2.36),

□𝑔b
a = ℎ̄

`a

|` . (2.3.18)

Therefore, one must find a vector field ξ that satisfies equation 2.3.18 and (for tracelessness),

b
`

|` + ℎ̄
2
= 0. (2.3.19)

Again, one can choose initial data for ξ on any Cauchy hypersurface for which the quantity in equation 2.3.19
and also its normal derivative vanish.

2.3.2 Complications in Linear Stability Analyses

What we have shown thus far in this chapter can be summarized as follows17 . Given a solution to the vacuum
Einstein field equations g, we can look for solutions ḡ that are ‘close’ to g in the space of solutions such that
we may write ḡ = g + h, with ∥h∥/∥g∥ ≪ 1. To obtain such solutions ḡ, which we can think of as being
a one-parameter (or multi-parameter) family of exact solutions ḡ (_), instead of solving the full non-linear
vacuum EFEs,

Ḡ [ḡ (_)] = 0, (2.3.20)

we can solve a set of linear partial differential equations (cf. equation 2.3.14)

ℒg (h) = 0, (2.3.21)

for the perturbation,

h =
dḡ
d_

����
_=0

, (2.3.22)

which may be obtained by linearizing the vacuum EFEs (2.3.20) around the ‘background solution’ g as [10],

d
d_

Ḡ[ḡ(_)]
����
_=0

= 0. (2.3.23)

Here _ is a parameter (or set of parameters) that measures the size of the perturbation in the sense that ḡ (_)
depends differentiably on _ and ḡ(0) = g. For further (geometric) intuition on what this linear operator ℒg

is, it might be useful to see §2.9 below.

As derived in this setup, the existence of a one or many parameter family of solutions ḡ(_) implies the existence
of a solution of the linearized equation (2.3.21). However, the converse is not necessarily true always: the
existence of a solution of the linearized equation does not necessarily imply the existence of a corresponding
family of solutions, i.e., there may be spurious solutions of (2.3.21); this is a property of non-linear theories.
Therefore, one needs to show the existence of exact solutions corresponding to a solution of (2.3.21) before
a perturbation analysis can be applied reliably [10], and this is the crux of the issue of linear stability of a
solution. More precisely, the system of non-linear vacuum EFEs (2.3.20) is said to be linearly stable at a

17We use different “language” here to summarize the material presented in the chapter previously, but the connection between the two
should be evident; one can see for example [10] for a more careful description of the material presented in the current section.
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solution g if every solutionh of the linearized equation (2.3.21) is tangent to a curve of solutions to the original
non-linear equations (see for example the discussion in [174, 175]).

Now, the existence of spurious solutions depends on the particular theory at hand and the background solution
(with its symmetries and topology) about which linearization is carried out. If such so called “non-integrable”
solutions exist, perturbation theory in some directions of solution space fails and we say that the theory is
not linearly stable at that exact solution. Essentially, such spurious solutions cannot be obtained from the
linearization of exact solutions. To be clear, the process of linearizing first the EFEs and then finding solutions
to the linearized equations can yield results that are different from linearizing exact solutions that already solve
the non-linear EFEs. This basically signals a breakdown of the first order perturbation theory, and can be
precisely defined (see [174]). This happens because the linearized equations of the theory are not sufficient to
constrain the linearized solutions: quadratic constraints on the linearized solutions, in the form of integrals (of
‘Taub conserved quantities’ for each Killing fields) arise [174]. In fact, the set of solutions to the EFEs form
a smooth manifold except at solutions with infinitesimal symmetries and spacetimes with compact Cauchy
hypersurfaces at which points there are conical singularities. If we introduce the second derivative k of the
_-parametrized metric family �̄�, a covariant two-tensor, as,

k =
d2ḡ

d_2

����
_=0

, (2.3.24)

then it can be shown that, for the consistency of the perturbation theory, the linearized and second-order
linearized forms of the EFEs relate h and k.

In fact, if the second-order linearized form of the EFEs has a solution k such that it does not impose a constraint
on h, then the non-linear version of the field equations are linearly stable at g [174]; of course, one is required
to ensure that higher-order linearized EFEs do not impose constraints on h either. In GR atleast, it is known
that the constraint equations are related to the zeroes of the moment map and hence no additional constraints
would arise from higher-order considerations beyond the second-order [176].

Now, since the vacuum linearized equations around a vacuum curved background (2.3.14) form a very com-
plicated system of coupled partial differential equations, for the reasons discussed in this section, perturbation
analyses have been successful only in restricted settings e.g., when the background metric has a great deal
of symmetry or possesses other simplifying properties. Even in these cases, a direct assault on equation
2.3.14 has not typically yielded great dividends. However, after a tremendous amount of effort, the linear
stability of the Minkowski spacetime [165] and, very recently, the Schwarzschild spacetime [112] have been
shown. Further, it is believed that all asymptotically-flat background spacetimes are linearly stable against
asymptotically-flat perturbations. We will not go into a description of these analyses since these are beyond
the scope of this thesis. For a detailed account on linearization stability in general relativity, one may see
[177].

Instead now we will enter into a discussion of linear mode stability of stationary spacetimes, which has the
implication that we will only be interested in the class of solutions to the linearized EFEs (2.3.10) that have a
harmonic time dependence, i.e. we can write,

h(𝑡, 𝑟, \, 𝜙) = ei𝜔𝑡 h̃(𝑟, \, 𝜙). (2.3.25)
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Here𝜔 is a fixed number, and as we shall see below, takes complex values. A mode stability analysis, although
far less powerful that a full linear stability analysis, is very useful since (a) it is typically not as intractable,
and (b) it is reasonably indicative of the linear stability of the solution: for example, if even a single solution
of the form given in equation 2.3.25 with Im(𝜔) < 0 is found (a ‘diverging’ mode), then one can conclude
immediately that the background solution is not linearly stable. Therefore, a mode stability analysis suffices
to prove linear instability. We will discuss the differences between a mode stability analysis and a full linear
stability analysis in §2.6 in brief.

We will start now with a detailed discussion of the linear mode stability of the Schwarzschild black hole
solution to give the reader a flavour of what it entails, before we set up the same for the Kerr spacetime.
Eventually, we will discuss our results, reported in [71], on the mode stability of a Kerr superspinar in §2.5.

2.4 Mode Stability of the Schwarzschild Solution18

The Schwarzschild metric gM is a one-parameter family of solutions of the vacuum EFEs (2.1.2), and is given
in Schwarzschild coordinates (𝑡, 𝑟, \, 𝜙) as [1],

d𝑠2 = −
(
1 − 2𝑀

𝑟

)
d𝑡2 +

(
1 − 2𝑀

𝑟

)−1
d𝑟2 + 𝑟2

(
d\2 + sin2 \ d𝜙2

)
.

This metric contains a genuine curvature singularity at 𝑟 = 0, which can be seen from the divergence at this
location of curvature invariants (under diffeomorphisms) like the Kretschmann scalar 𝒦 = 𝑅𝜌`a𝜎𝑅𝜌`a𝜎

which, in Geometrized units 8𝜋𝒢 = 𝑐 = 1, for the current context yields [178],

𝒦 =
3𝑀2

4𝜋2𝑟6 . (2.4.1)

This metric also possesses an event horizon, whose location is obtained from the condition of vanishing null
expansion, i.e., at the zero of 𝑔−1

𝑟𝑟 , which occurs at 𝑟 = 2𝑀 . Therefore, this metric describes the geometry of a
static black hole.

Because of the spherical symmetry of the Schwarzschild background, the linearized field equations (2.3.21)
for the perturbation h are, schematically, in the form of a rotationally-invariant differential operator ℒSchw

acting on h equals to zero (more generally, it is set equal to the source terms T̄ [179]). We can therefore
separate out the angular variables of the linearized equations (2.3.12) for this background spacetime. However,
a naïve deomposition into a \, 𝜙-dependent function and a 𝑡, 𝑟-dependent function for each of the ten metric
components ℎ`a does not work [56, 74, 179], as we will see below, since the metric perturbation h transforms
as a tensor under rotations of the two-sphere spanned by

(
𝜕\ , 𝜕𝜙

)
.

In particular, the metric perturbation components ℎ𝑡𝑡 , ℎ𝑡𝑟 , and ℎ𝑟𝑟 transform as independent scalars under
rotations, and can each therefore be expanded as a sum of scalar spherical harmonics 𝑌𝑙𝑚 (\, 𝜙). For example,
we could write ℎ𝑡𝑡 as (see for example [180]),

ℎ𝑡𝑡 (𝑡, 𝑟, \, 𝜙) =
∑︁
𝑙,𝑚

𝐻0𝑙𝑚 (𝑡, 𝑟)𝑌𝑙𝑚 (\, 𝜙). (2.4.2)

18We have drawn from the seminal papers of [56, 57, 61, 179] and from the excellent modern review articles of [27, 73, 74].
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Next,
(
ℎ𝑡 \ , ℎ𝑡 𝜙

)
and

(
ℎ𝑟 \ , ℎ𝑟 𝜙

)
transform as components of two-vectors, and can be expanded in terms of the

fundamental vector spherical harmonics V 1 and V 2, which are defined as [56],(
𝑉1
𝑙𝑚

)
𝑎
= (𝑌𝑙𝑚);𝑎 =

𝜕𝑌𝑙𝑚

𝜕𝑥𝑎
,

(
𝑉2
𝑙𝑚

)
𝑎
= 𝜖 𝑏

𝑎 (𝑌𝑙𝑚);𝑏 = 𝜖𝑎𝑐𝛾
𝑐𝑏 𝜕𝑌𝑙𝑚

𝜕𝑥𝑏
. (2.4.3)

In the above, the space-time indices 𝑎, 𝑏, and 𝑐 take values 2 or 3 (corresponding to the angular variables 𝑥2 = \

and 𝑥3 = 𝜙 respectively), γ is the metric on the two-sphere of unit-radius, ϵ is the totally antisymmetric tensor

(Levi-Civita tensor or volume form) in two dimensions [167], i.e. 𝜖𝑎𝑏 = sin \

[
0 −1
1 0

]
, and the covariant

derivatives are to be taken on the two-sphere.

Finally, ℎ\ \ , ℎ\ 𝜙 and ℎ𝜙𝜙 transform as components of a 2×2 tensor, and can be expanded in terms of the
three fundamental two-tensor spherical harmonics T 1,T 2, and T 3, which are [56],(

𝑇1
𝑙𝑚

)
𝑎𝑏

= (𝑌𝑙𝑚);𝑎𝑏 ,
(
𝑇2
𝑙𝑚

)
𝑎𝑏

= 𝑌𝑙𝑚𝛾𝑎𝑏,

(
𝑇3
𝑙𝑚

)
𝑎𝑏

=
1
2

(
𝜖 𝑐
𝑎 (𝑌𝑙𝑚);𝑐𝑏 + 𝜖 𝑐

𝑏 (𝑌𝑙𝑚);𝑐𝑎
)
. (2.4.4)

Further, since the background metric is also invariant against space inversions i.e., under the transformation
(\, 𝜙) → (𝜋 − \, 𝜋 + 𝜙), we expect naturally that the perturbation equations do not mix modes that transform
differently under space inversions, i.e. modes of different parity. Therefore, an examination of the parity of
the tensor spherical harmonics listed above becomes necessary. From the definition of the scalar spherical
harmonics, evidently under such an inversion, we obtain 𝑌𝑙𝑚 → (−1)𝑙𝑌𝑙𝑚. Since the covariant derivative
of a function preserves parity, and a multiplication with ϵ inverts it [74], we can see that V 1,T 1, and T 2

transform with a factor of (−1)𝑙 under space inversions, similar to the 𝑌 , and V 2 and T 3 transform with a
factor of (−1)𝑙+1. It is useful therefore to categorize these perturbations along lines of parity, following [63],
as being polar

[
(−1)𝑙

]
and axial

[
(−1)𝑙+1] perturbations. An important (physical) distinction between these

two types of perturbations is also pointed out there: axial perturbations impart a differential rotation to the
black hole, while polar perturbations do not. Of course, any of these tensor spherical harmonics 𝑌,V ,T can
be multiplied by arbitrary functions of 𝑡 and 𝑟 , without changing its transformation properties under a rotation.

To summarize, h can be expanded in tensor spherical harmonics as [56],

h =
∑︁
𝑙,𝑚

{
𝐻0𝑌𝑙𝑚 + 𝐻1𝑌𝑙𝑚 + 𝐻2𝑌𝑙𝑚 + ℎ0

(
V 1
𝑙𝑚 + V 2

𝑙𝑚

)
+ ℎ1

(
V 1
𝑙𝑚 + V 2

𝑙𝑚

)
+ 𝐺T 1

𝑙𝑚 + 𝐾T 2
𝑙𝑚 + ℎ2T

3
𝑙𝑚

}
. (2.4.5)

In the above we have, following the Regge-Wheeler (RW) naming convention [56], introduced eight coefficient
functions 𝐻0, 𝐻1, 𝐻2, ℎ0, ℎ1, ℎ2, 𝐺, 𝐾 , each of which are functions only of 𝑡 and 𝑟 . However, there will be
a set of coefficient functions for each (𝑙, 𝑚)-pair, and we have simply omitted these subscripts for brevity.
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Pictorially, when split along parity-lines into a polar and an axial piece, we can write,

h = hP + hA =



𝐻0𝑌 𝐻1𝑌 ℎ0V
1

* 𝐻2𝑌 ℎ1V
1

* * 𝐺T 1 + 𝐾T 2



+



0 0 ℎ0V
2

* 0 ℎ1V
2

* * ℎ2T
3



,

and in the above, asterisks denote components that are determined by symmetry.

Putting everything in, the general form of a polar metric perturbation hP, of angular momentum 𝑙 and its
projection on the z-axis 𝑚, is [56],

ℎP
`a =



(
1 − 2𝑀

𝑟

)
𝐻0𝑌 𝐻1𝑌 ℎ0

𝜕
𝜕\
𝑌 ℎ0

𝜕
𝜕𝜙
𝑌

∗
(
1 − 2𝑀

𝑟

)−1
𝐻2𝑌 ℎ1

𝜕
𝜕\
𝑌 ℎ1

𝜕
𝜕𝜙
𝑌

∗ ∗ 𝑟2
[
𝐾 + 𝐺 𝜕2

𝜕\2

]
𝑌 𝑟2𝐺

[
𝜕2

𝜕\𝜕𝜙
− cot \ 𝜕

𝜕𝜙

]
𝑌

∗ ∗ ∗ 𝑟2 sin2 \
[
𝐾 + 𝐺

(
cot \ 𝜕

𝜕\
+ 1

sin2 \

𝜕2

𝜕𝜙2

)]
𝑌


,

(2.4.6)
and we have suppressed in the above the 𝑙, 𝑚 subscripts of the scalar spherical harmonics 𝑌 as well, for
simplicity. Similarly, for an axial metric perturbation hA, we can write [56],

ℎA
`a =



0 0 −ℎ0
1

sin \
𝜕
𝜕𝜙
𝑌 ℎ0 sin \ 𝜕

𝜕\
𝑌

∗ 0 −ℎ1
1

sin \
𝜕
𝜕𝜙
𝑌 ℎ1 sin \ 𝜕

𝜕\
𝑌

∗ ∗ ℎ2
1

sin \

[
𝜕2

𝜕\𝜕𝜙
− cot \ 𝜕

𝜕𝜙

]
𝑌 1

2 ℎ2 sin \
[
− 𝜕2

𝜕2 \
+

(
cot \ 𝜕

𝜕\
+ 1

sin2 \

𝜕2

𝜕2𝜙

)]
𝑌

∗ ∗ ∗ −ℎ2 sin \
[

𝜕2

𝜕\𝜕𝜙
− cot \ 𝜕

𝜕𝜙

]
𝑌


. (2.4.7)

We are again at the point where a gauge choice must be made before we attempt to solve the linearized
EFEs for the metric perturbations, or equivalently for the RW coefficient functions. It must be noted that the
gauge of the background spacetime is essentially fixed, since we have decided to use the Schwarzschild metric
in Schwarzschild coordinates. However, once the background metric is perturbed, the gauge choice can be
modified to first order in the perturbation, thereby affecting only the first-order metric perturbations, but not
the background metric. In particular, we want this infinitesimal gauge transformation to have the property
that it conserves (a) the decomposition into tensor spherical harmonics, and (b) the separation into axial and
polar metric perturbations. Since the gauge transformation given in equation 2.2.15 can be performed on any
individual partial wave, one gauge vector (cf. equation 2.2.15) must be constructed so that it is axial under
rotations, and another that transforms as a polar vector must be found. The Regge-Wheeler (RW) gauge [56]
is a particularly convenient choice (for both axial and polar perturbations) here since it allows one to eliminate
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terms that have the highest derivatives in the angles (\, 𝜙), and is imposed by requiring (see also [74]),

𝜕

𝜕\
(sin \ℎ𝑡 \ ) = − 𝜕

𝜕𝜙

(
1

sin \
ℎ𝑡 𝜙

)
, ℎ\ 𝜙 = 0, (2.4.8)

𝜕

𝜕\
(sin \ℎ𝑟 \ ) = − 𝜕

𝜕𝜙

(
1

sin \
ℎ𝑟 𝜙

)
, ℎ𝜙𝜙 = sin2 \ℎ\ \ .

For axial perturbations (2.4.7), this means choosing the coefficient function ℎ2 (𝑡, 𝑟) to be vanishing. For the
polar perturbations, we can set ℎ0 (𝑡, 𝑟) = ℎ1 (𝑡, 𝑟) = 𝐺 (𝑡, 𝑟) = 0 (see [56] for details and also the excellent
table I of [179]).

The equations of motion for the coefficient functions can be derived for the different parity perturbations
separately, and we now quickly discuss the result of inserting the the axial perturbations (2.4.15) in the
linearized EFEs derived earlier,

𝛿𝑅`a = 2𝛿Γ 𝛽

` [a |𝛽 ] = 0. (2.4.9)

For the axial case, of the ten linearized EFEs, some are satisfied trivially, and only three non-trivial ones
remain: the 𝛿𝑅23, 𝛿𝑅13, 𝛿𝑅03 equations, in two variables ℎ0 and ℎ1 [74]. However, there is some redundancy
in this system of equations and it turns out that the last of these three equations may be derived from the other
two. We can therefore combine the remaining two equations to eliminate ℎ0 and obtain a single second-order
equation for ℎ1 as [74],

𝜕2ΨA

𝜕𝑡2
− 𝜕2ΨA

𝜕𝑟2
∗

+
(
1 − 2𝑀

𝑟

) [
𝑙 (𝑙 + 1)
𝑟2 − 6𝑀

𝑟3

]
ΨA = 0, (2.4.10)

where we have introduced the axial perturbation variable ΨA as,

ΨA (𝑡, 𝑟) =
(
1 − 2𝑀

𝑟

)
ℎ1 (𝑡, 𝑟)
𝑟

, (2.4.11)

and 𝑟∗ is the “tortoise” radial coordinate, which ranges from −∞ to +∞, corresponding to the range of 𝑟 from
2𝑀 to ∞, and is defined as,

𝑟∗
2𝑀

=
𝑟

2𝑀
+ log

( 𝑟

2𝑀
− 1

)
. (2.4.12)

This radial coordinate is useful since it sends the coordinate singularity of the Schwarzschild metric in the
Schwarzschild coordinates, which is at 𝑟 = 2𝑀 to 𝑟∗ = −∞. Also, we note that the eliminated coefficient
function ℎ0 can be recovered from [180],

𝜕ℎ0

𝜕𝑡
=

𝜕

𝜕𝑟∗

(
𝑟∗Ψ

A
)
. (2.4.13)

The time-dependent linearized EFEs for the polar perturbations in this gauge (2.4.6) can also be recast into a
form akin to equation 2.4.10, and we will leave the reader to see for example [180] for further details.

We have now successfully separated out the angular dependence of the perturbations from the functional part
that depends on the other coordinates, and the perturbation equations (2.4.10) now evidently only involve
partial derivatives 𝑡 and 𝑟 .
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2.4.1 Time-Independent Linearized Perturbation Equations and Quasi-Normal Modes

The general linearized equations given in equation 2.4.10 and its equivalent for the polar metric perturba-
tions (see equation 94 of [180]) describe the response of the Schwarzschild black hole to external metric
perturbations, and the time evolution of any initial perturbation can be determined by simply integrating them
numerically. However, since we would like to study properties intrinsic to the black hole spacetime itself,
rather than the effect of a specific perturbation, we are immediately inclined to look for and study ‘fundamental
vibrational modes’ of the black hole. Indeed since in addition to the background spacetime being spherically
symmetric and invariant under spatial reflections, it is also time independent, we can therefore look for solutions
to the perturbation equations of fixed frequency𝜔; i.e., we can restrict in particular to metric perturbations that
exhibit a harmonic time behaviour, h(𝑡, 𝑟, \, 𝜙) = ei𝜔𝑡 h̃(𝑟, \, 𝜙). This means that we can variable-separate
each of coefficient functions introduced above as, ℎ𝑖 (𝑡, 𝑟) = ei𝜔𝑡 ℎ̃𝑖 (𝑟). Now, if the linearized equations for the
Schwarzschild metric perturbations obtained above admit harmonic solutions whose amplitudes grow in time,
then the black hole is unstable against these harmonic perturbations; otherwise, it is stable.

In the RW gauge, the following form for the harmonic polar perturbations results [27, 56],

ℎP
`a = ei𝜔𝑡



(
1 − 2𝑀

𝑟

)
�̃�0 (𝑟) �̃�1 (𝑟) 0 0

∗
(
1 − 2𝑀

𝑟

)−1
�̃�2 (𝑟) 0 0

∗ ∗ 𝑟2�̃� (𝑟) 0
∗ ∗ ∗ 𝑟2 sin2 \�̃� (𝑟).


𝑌𝑙0. (2.4.14)

On the other hand, for harmonic axial metric perturbations, we obtain,

ℎA
`a = ei𝜔𝑡


0 0 0 ℎ̃0 (𝑟)
∗ 0 0 ℎ̃1 (𝑟)
∗ ∗ 0 0
∗ ∗ ∗ 0


sin \

𝜕

𝜕\
𝑌𝑙0. (2.4.15)

Since we are dealing with a spherically symmetric background spacetime, one can intuitively expect that the
angular dependence of the perturbations will not involve 𝑚 (for details see [179, 181, 182]).

Now since we have set ℎ1 (𝑡, 𝑟) = ei𝜔𝑡 ℎ̃1 (𝑟), we can define

𝜓A (𝑟) ≡ e−i𝜔𝑡ΨA =

(
1 − 2𝑀

𝑟

)
ℎ̃1 (𝑟)
𝑟

, (2.4.16)

and insert it into the time-dependent linearized perturbation equations displayed above (2.4.10), to obtain a
single second-order time-independent equation as,

d2

d𝑟2
∗
𝜓A +

(
𝜔2 −𝑉A

𝑙 (𝑟)
)
𝜓A = 0, (2.4.17)

with the RW potential 𝑉A
𝑙

for harmonic axial perturbations being given as [57],

𝑉A
𝑙 =

(
1 − 2𝑀

𝑟

) [
𝑙 (𝑙 + 1)
𝑟2 − 6𝑀

𝑟3

]
. (2.4.18)
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It is to be noted that 𝜓A is invariant under first-order gauge transformations. Strikingly, even though we have
reduced the problem to this simple Schrödinger-like equation (2.4.17), we can still reconstruct fully arbitrary
harmonic axial perturbations (in the RW gauge) from it. Besides ℎ̃1, we only need ℎ̃0, which can be obtained
from the other equations as [27],

ℎ̃0 (𝑟) =
i
𝜔

d
d𝑟∗

(
𝑟𝜓A

)
. (2.4.19)

It was shown in [61] that the harmonic polar perturbation equations can also be put into a Schrödinger-like form
similar to equation 2.4.17. In particular, if one inserts the general form of the harmonic polar perturbations
given in equation 2.4.14 into the linearized equations, it can be shown that 𝐻0 = 𝐻2 ≡ 𝐻 [56]. Furthermore,
it turns out that 𝐻 can be given in terms of 𝐻1 and 𝐾 . Therefore, after accounting for all the redundancy, one
is left with only two coefficient functions, 𝐻1 and 𝐾 , which must be solved for from a set of two coupled first-
order linear differential equations [61]. Similar to the axial case, we can rewrite these as a single second-order
Schrödinger-like equation in terms of an auxiliary function 𝜓P,

d2

d𝑟2
∗
𝜓P +

(
𝜔2 −𝑉P

𝑙 (𝑟)
)
𝜓P = 0, (2.4.20)

with the Zerilli potential 𝑉P
𝑙

being given as [61],

𝑉P
𝑙 (𝑟) =

(
1 − 2𝑀

𝑟

) [
2_2 (_ + 1)𝑟3 + 6_2𝑀𝑟2 + 18_𝑀2𝑟 + 18𝑀3

𝑟3 (_𝑟 + 3𝑀)2

]
. (2.4.21)

Here, we have introduced _ as, 2_ = (𝑙 − 1) (𝑙 + 2). The polar perturbation coefficient functions 𝐾 and 𝐻1 can
be recovered from 𝜓P via [27],

𝐾 =
d𝜓P

d𝑟∗
+ _(_ + 1)𝑟2 + 3_𝑀𝑟 + 6𝑀2

𝑟2 (_𝑟 + 3𝑀)2 𝜓P, (2.4.22)

𝐻1 = − i𝜔
(
1 − 2𝑀

𝑟

)−1 [
d𝜓P

d𝑟∗
+ _𝑟

2 − 3_𝑀𝑟 − 6𝑀2

𝑟 (_𝑟 + 3𝑀) 𝜓P
]
.

Also, for completeness, we display below the algebraic equation that can be used to obtain 𝐻 [27],[
2_ + 6𝑀

𝑟

]
𝐻 =

[
2_ −

(
1 − 2𝑀

𝑟

)−1 (
2𝜔2𝑟4 − 2𝑀𝑟 + 6𝑀2

𝑟2

)]
𝐾 + i

[
2𝜔𝑟 − 𝑙 (𝑙 + 1)𝑀

𝜔𝑟2

]
𝐻1. (2.4.23)

What we have arrived is this: arbitrary small metric perturbations of the Schwarzschild spacetime are governed
by two scalar functions 𝜓A and 𝜓P, which satisfy the ordinary second-order differential equations given in
equations 2.4.17 and 2.4.20 respectively, which look like the Schrödinger equation (see Appendix A of [73]).
These two seemingly different potentials 𝑉A

𝑙
and 𝑉P

𝑙
have the remarkable property of being isospectral, i.e.

they possess the same frequency spectrum; see figure 2.1. On closer inspection, it was shown in [62] that one
can in fact transform the perturbation equation for the harmonic axial perturbations into the one corresponding
to the harmonic polar perturbations via a transformation involving differential operations, thereby uniting
them under the same banner. It can also be shown that these perturbations equations are connected to the
Bardeen-Press perturbation equation [66], which is derived via the Newman-Penrose formalism [65].

Equations 2.4.17 and 2.4.20 are wave equations with scattering potential barriers 𝑉A
𝑙

and 𝑉P
𝑙

respectively, and
metric perturbations reaching the black hole from spatial infinity can be regarded as wave packets that will
scatter under their influence. Therefore, they share all of the well-known properties of a wave equation in
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Figure 2.1: Here we show the effective potentials for the harmonic axial and polar perturbations 𝑉A
𝑙

and 𝑉P
𝑙

respectively for 𝑙 = 2, 3, outside the Schwarzschild black hole horizon, which is at 𝑟 = 2𝑀 . The first thing
to note is that although the RW (2.4.18) and the Zerilli (2.4.21) potentials look markedly different, they are
isospectral. Also, the maxima of these functions is approximately near the Schwarzschild photon sphere, which

is located at 𝑟 = 3𝑀 (see for example Ch. 3 below).

a scattering potential. As in quantum mechanics, all of the wave packet will not in general be transmitted
through the potential, and some of it, depending on the properties of the packet itself, will be reflected and
reach spatial infinity again. It is important that both of these potentials are positive definite, have a single peak
in the black hole exterior 𝑟 ≥ 2𝑀 [183], and fall off to 0 exponentially as 𝑟∗ → −∞ and as 𝑟−2

∗ as 𝑟∗ → ∞. This
implies that they do not allow bound states, and so we cannot impose as boundary conditions that solutions
should vanish towards the boundaries [184].

Instead, we can look for harmonic perturbations that satisfy a pure outgoing-wave boundary condition at spatial
infinity (𝑟 → ∞ or 𝑟∗ → ∞) and a pure ingoing-wave boundary condition19 at the horizon of the black hole
(𝑟 → 2𝑀+ or 𝑟∗ → −∞). This choice of boundary conditions makes perfect sense since it essentially allows
us to study the response of the metric outside the black hole to initial perturbations, with no interference from
gravitational radiation sources present at spatial infinity, with the additional condition the black holes do not
radiate classically. Now, as a result of the choice of boundary conditions for |𝑟∗ | → ∞, we require that the
solutions of equations 2.4.17 and 2.4.20 behave as,

𝜓 ∼


ei𝜔𝑟∗ , as 𝑟∗ → −∞,

e−i𝜔𝑟∗ , as 𝑟∗ → −∞.
(2.4.24)

In the above we have used 𝜓 to denote both the axial 𝜓A and polar 𝜓P harmonic metric perturbation variables.

19At the horizon, the term ingoing denotes that the metric perturbation ‘falls into the black hole.’ However, it is more useful (and
unifying) as is pointed out by [185] and also in [74] to call this set of boundary conditions to be outgoing at both boundaries since the
wave leaves the domain we are studying.
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The set of complex frequencies which allow solutions of equations 2.4.17 and 2.4.20, together with boundary
conditions given in equation 2.4.24, are called quasi-normal frequencies (QNFs); the solutions constructed
from them are the quasi-normal modes (QNMs). The ‘quasi’ in their names expresses the fact that they are
not quite the same as normal modes: in general, they are not really stationary in time due to possible damping.

Now, numerous results that have been found for these types of (Schrödinger-like) equation can also be applied
to the propagation of perturbations in the spacetime of Schwarzschild black hole (see [63] for a detailed
discussion) to obtain its QNMs and QNFs. However, here we will simply show an approximation for the
complex QN frequency, based on the standard WKB treatment of wave scattering on the peak of the potential
barrier, which was given in [73, 185],

(𝑀𝜔𝑛)2 = 𝑉𝑙 (𝑟0) − i
(
𝑛 + 1

2

) [
−2

d2𝑉𝑙 (𝑟0)
d𝑟2

∗

]1/2

, (2.4.25)

where 𝑟0 is the peak of the potential barrier, which is close to 𝑟 = 3𝑀; see figure 2.1. See [186] for a list of
these frequencies.

It is now well established that only a discrete set of QNFs satisfy these boundary conditions for the
Schwarzschild black hole. Further, all of them have positive imaginary parts [60], and represent there-
fore damped modes; therefore a Schwarzschild black hole is mode stable. The damping time depends linearly
on the mass of the black hole (𝜔 ∝ 𝑀−1), and is shorter for higher order modes (𝜔𝑛 < 𝜔𝑛+1). The QNMs in
black holes are isospectral, i.e. axial and polar perturbations have the same complex QNFs.

Finally, it is useful to note that scalar (𝑠 = 0), electromagnetic (𝑠 = 1) and axial gravitational (𝑠 = 2)
perturbations can in fact all be described by the equation 2.4.17 with the generalized effective potential 𝒱𝑙

given as,

𝒱𝑙 (𝑟) =
(
1 − 2𝑀

𝑟

) [
𝑙 (𝑙 + 1)
𝑟2 + 2(1 − 𝑠2)𝑀

𝑟3

]
. (2.4.26)

In the above, we have introduced 𝑠 to denote the spin of the perturbing field. Evidently, this potential reduces
to the potential for the harmonic axial metric perturbations (2.4.18) for 𝑠 = 2. This effective potential 𝒱𝑙 is
real and positive everywhere and vanishes near the horizon, 𝑟∗ → −∞, where it decays exponentially, and at
asymptotic infinity, 𝑟∗ → ∞, where it decays as 𝑟−2

∗ . One may see §2 of [73] for insight on these perturbation
equations; also see §3.1 therein for references to more detailed analyses. The potentials half-integer spin
perturbations take a form different from equation 2.4.26 and we direct the reader to see [187] for details on the
same.

2.5 Mode Stability of the Kerr Solution

The Kerr metric 𝑔M, a is a two-parameter family of solutions to the vacuum Einstein field equations and is
given in Boyer-Lindquist coordinates (𝑡, 𝑟, \, 𝜙) as [4, 188],

d𝑠2 = −
(
1 − 2𝑀𝑟

𝜌2

)
d𝑡2 − 4𝑀𝑎𝑟 sin2 \

𝜌2 d𝑡d𝜙 + 𝐴 sin2 \

𝜌2 d𝜙2 + 𝜌
2

Δ
d𝑟2 + 𝜌2d\2,

and we have employed Geometrized units 𝒢 = 𝑐 = 1. In the above, we have introduced the specific angular
momentum 𝑎 = 𝐽/𝑀 , with Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2, 𝜌2 = 𝑟2 + 𝑎2 cos2 \ and 𝐴 = (𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 \.
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This solution possesses a curvature singularity, which is located at 𝜌 = 0, i.e., at 𝑟 = 0, \ = 𝜋/2, as can be
seen from the associated Kretschmann scalar [189],

𝒦 =
3𝑀2

4𝜋2𝜌6

(
𝑟2 − 𝑎2 cos2 \

) (
𝜌4 − 16𝑟2𝑎2 cos2 \

)
, (2.5.1)

and event horizons, which are located at the zeroes of the null expansion scalar i.e. at 𝑔−1
𝑟𝑟 = 0,

𝑟± = 𝑀 ±
√︁
𝑀2 − 𝑎2, (2.5.2)

where 𝑟+ and 𝑟− correspond to the outer event horizon and the inner Cauchy horizon respectively. It is clear
then that the metric (4.3.1) describes a black hole for 𝑎 ≤ 𝑀 or 𝐽 ≤ 𝑀2, since 𝑟± are real valued. In the
extremal case, 𝑎 = 𝑀 , there is only one degenerate event horizon. In the parameter regime 𝑎 > 𝑀 or 𝐽 > 𝑀2,
this metric continues to be a valid solution of the vacuum EFEs; however, it now describes the geometry of a
spacetime containing a rotating naked singularity.

It turns out that the derivation of the linearized EFEs about the Kerr background is considerably more
complicated than it was for the Schwarzschild case: a direct derivation for metric perturbations via the method
adopted in the chapter thus far fails. It leads to gauge-dependent, and rather messy, formulations in which
one cannot readily separate the variables as before. We note here that this method still works in the Kerr case
for scalar perturbations [190, 191]. A theoretically attractive alternative for the general case is to examine
curvature perturbations, the approach followed in the seminal papers [67], which we outline below.

If we introduce the complex Kinnersley null tetrad as [192],

𝑙` =
1
Δ

(
𝑟2 + 𝑎2,Δ, 0, 𝑎

)
, 𝑛` =

1
2𝜌2

(
𝑟2 + 𝑎2,−Δ, 0, 𝑎

)
, 𝑚` =

1
√

2(𝑟 + i𝑎 cos \)

(
i𝑎 sin \, 0, 1,

i
sin \

)
,

then the electromagnetic field is characterized by the Newman-Penrose components [65],

𝜙0 = 𝐹`a 𝑙
`𝑚a , 𝜙1 =

1
2
𝐹`a (𝑙`𝑛a + �̄�`𝑚a) , 𝜙2 = 𝐹`a�̄�

`𝑛a , (2.5.3)

where F is the electromagnetic field tensor, and m̄ is the complex conjugate of m. In particular, 𝜙0 and 𝜙2

correspond to the ingoing and outgoing radiative parts of the field [67]. Similarly, gravitational radiation is
described by perturbations in the Weyl tensor 𝐶𝛼𝛽𝛾𝛿 , which is the traceless part of the Riemann tensor, and
has ingoing and outgoing radiative parts given by Ψ̃0 and Ψ̃4 given as [67],

Ψ̃0 = −𝐶𝛼𝛽𝛾𝛿 𝑙
𝛼𝑚𝛽 𝑙𝛾𝑚 𝛿 , Ψ̃4 = −𝐶𝛼𝛽𝛾𝛿𝑛

𝛼�̄�𝛽𝑛𝛾�̄� 𝛿 , (2.5.4)

It can be demonstrated that these components are invariant under gauge transformations and infinitesimal
tetrad rotations. Now, if we introduce a perturbation variable Ψ similar to the Schwarzschild case to describe
these different fields as [67],

𝜙0 =Ψ, 𝜙2 = 𝜌2Ψ, Ψ̃0 = Ψ, Ψ̃4 = 𝜌4Ψ. (2.5.5)
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it was shown in [67] that the Newman-Penrose version of the vacuum linearized EFEs for the Kerr metric are
given in a unified manner as,[

(𝑟2 + 𝑎2)2

Δ
− 𝑎2 sin2 \

]
𝜕2Ψ

𝜕𝑡2
+ 4𝑀𝑎𝑟

Δ

𝜕2Ψ

𝜕𝑡𝜕𝜙
+

[
𝑎2

Δ
− 1

sin2 \

]
− Δ−𝑠 𝜕

𝜕𝑟

(
Δ𝑠+1 𝜕Ψ

𝜕𝑟

)
− 1

sin \
𝜕

𝜕\

(
sin \

𝜕Ψ

𝜕\

)
−2𝑠

[
𝑎(𝑟 − 𝑀)

Δ
+ 𝑖 cos \

sin \

]
𝜕Ψ

𝜕𝜙
− 2𝑠

[
𝑀 (𝑟2 − 𝑎2)

Δ
− 𝑟 − 𝑖𝑎 cos \

]
𝜕Ψ

𝜕𝑡
+ (𝑠2 cot2 \ − 𝑠)Ψ = 0, (2.5.6)

where we have introduced the spin-weight 𝑠 = 0,±1,±2 for scalar, electromagnetic and gravitational pertur-
bations respectively.

Note that in the Schwarzschild case, the background metric is static20 and spherically symmetric, so the time
and angular dependence can easily be separated out of the equations. Moreover, the replacement of spherical
symmetry by axial symmetry means that a separation into spherical harmonics is no longer possible; one
expects to end up with partial differential equations in 𝑟 and \ instead of ordinary differential equations in 𝑟 .

If we now introduce a harmonic perturbation variable 𝜓 that respects the Killing symmetries of the background
spacetime (see for example the discussions in Chapter 4),

𝜓 = e−i𝜔𝑡+i𝑚𝜙𝑅𝑙𝑚 (𝑟)𝑆𝑙𝑚 (\), (2.5.7)

the linearized equations (2.5.6) separate into the radial and angular Teukolsky equations as [67],

Δ−𝑠 d
d𝑟

(
Δ𝑠+1 d𝑅𝑙𝑚

d𝑟

)
+

(
𝐾2 − 2i𝑠(𝑟 − 𝑀)𝐾

Δ
+ 4i𝑠𝜔𝑟 − _

)
𝑅𝑙𝑚 = 0, (2.5.8)

1
sin \

d
d\

(
sin \

𝑑𝑆𝑙𝑚

d\

)
+

[
(𝑎𝜔 cos \ + 𝑠)2 −

(
𝑚 + 𝑠 cos \

sin \

)2
− 𝑠(𝑠 − 1) + 𝐹

]
𝑆𝑙𝑚 = 0. (2.5.9)

In the above, we have have introduced 𝐾 ≡ (𝑟2 + 𝑎2)𝜔 − 𝑎𝑚 and _ ≡ 𝐹 + 𝑎2𝜔2 − 2𝑎𝑚𝜔. We now make some
comments on the angular equation. For each complex 𝑎2𝜔2 and positive integer 𝑚, equation 2.5.9 together
with the boundary conditions of regularity on the axis (i.e., at \ = 0 and \ = 𝜋), determines a Sturm-Liouville
eigenvalue problem. It has solutions for eigenvalues 𝐹 = 𝑠𝐹

𝑙
𝑚,𝜔 21 when the integer 𝑙 is larger than or equal

to max( |𝑚 |, |𝑠 |), and the corresponding eigenfunctions 𝑆𝑙𝑚 (\) are the spheroidal (oblate) harmonics. These
eigenfunctions exist for all complex 𝜔2. For real 𝜔2, the spheroidal harmonics are complete in the sense that
any function of 𝑧 = cos \, absolutely integrable over the interval over [−1, 1], can be expanded into spheroidal
harmonics of fixed 𝑚. Since the angular equation is well understood, one is required to solve now only the
radial differential equation (2.5.8).

The asymptotic behaviour of the solutions to the radial equation (2.5.8) at 𝑟 = ∞ can be shown to be 𝑒i𝜔𝑟/𝑟 (2𝑠+1)

for outgoing waves and 𝑒−i𝜔𝑟/𝑟 for ingoing waves. Before we enter into a treatment of QNMs, it is convenient
to introduce �̃�𝑙𝑚 as,

𝑅𝑙𝑚 = Δ−𝑠 �̃� exp
(
−i

∫
d𝑟
Δ
𝐾

)
. (2.5.10)

20It admits a global, non-vanishing, timelike Killing vector field ξ which is irrotational, i.e., whose orthogonal distribution is involutive.
21This 𝐹 is not to be confused with the electromagnetic field tensor previously introduced.
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This is roughly the statement that we’re moving to the Kerr-equivalent of the tortoise coordinates22. Then, in
terms of �̃�, the radial Teukolsky equation (2.5.8) becomes,

Δ
d2 �̃�

d𝑟2 −
[
2i𝜔(𝑟2 + 𝑎2) − 2(𝑠 + 1) (𝑟 − 𝑀) − 2i𝑎𝑚

] d�̃�
d𝑟

−
[
2(2𝑠 + 1)i𝜔𝑟 + _̃

]
�̃� = 0, (2.5.11)

where, using 𝐹 = 𝐸 − 𝑠(𝑠 + 1), we have introduced 𝑠 := −𝑠 and _̃ := _ + 2𝑠 = 𝐸 + 𝑎2𝜔2 − 2𝑎𝑚𝜔 − 𝑠(𝑠 + 1).

Finally, we note that 𝜔 will acquire the interpretation of being the characteristic QNF, when the appropriate
boundary conditions are imposed. The boundary condition at spatial infinity for a QNM analysis is independent
of the spacetime under considerations, and we will again impose purely outgoing boundary conditions there.
Now, black holes have a natural inner boundary condition corresponding to purely absorbing ones at 𝑟 = 𝑟+.
In this case, the corresonding QNFs have been shown to have a negative imaginary part, implying stability
[68]. Kerr naked singularities, on the other hand, admit QNMs with a purely positive imaginary part, and are
therefore unstable [193]. This already suggests the reliability of the weak version of the cosmic censorship
hypothesis whose statement is, roughly speaking, that spacetime singularities formed from generic initial
conditions are enclosed by event horizons.

However, if we adopt the more generous spirit of [55], that “the Kerr bound is a consequence of the detailed
prejudice about the regions of very strong curvature (for example, if one assumes the exact validity of classical
GR); it should thus be viewed as an approximate bound and expected to receive substantial corrections in string
theory. · · · In this sense, the cosmic censorship conjecture would be invalid in its most naïve GR form: Some
‘naked singularities’ of GR would be legitimate not because they hide behind horizons, but because they are
resolved due to high-energy effects of the deeper theory. It is indeed important to apply to astrophysical objects
lessons learned in effective field theory: Observations at a given energy scale (or spacetime curvature) should
not require detailed knowledge of the physics at a much higher energy scale (or curvature). Imposing standard
cosmic censorship of GR on astrophysical objects violates this ‘decoupling principle,’ by extrapolating GR
into the high-curvature regime,” then one must study the properties of hypothetical, exotic objects such as Kerr
superspinars, the geometry in whose exterior is given by the overspinning Kerr solution.

Furthermore, since string theory has proven to be exceptionally good at resolving spacetimes containing
various timelike singularities [194–197], following [55, 69, 70, 77], here we take the view that the Kerr naked
singularity metric could possibly be ‘cured’ to represent new classes of legitimate compact objects in the
string-theoretic completion of GR (or, more broadly speaking, in the ultimate theory of quantum gravity). In
fact, the tension between the two notions of extremality for the presently relevant Kerr-Newman black hole
family, namely, the notion from supersymmetry (𝑄2 ≤ 𝑀2; the BPS bound) vs. the more restrictive GR one
(𝐽2 +𝑄2 ≤ 𝑀2; the Kerr-Newman bound) suggests that a more pragmatic view when considering such exotic
objects could prove to be fruitful23.

We now make a few comments on the scale of the stringy effects that would eventually determine the size of the
superspinar. If we consider, for clarity, the case of the pathological supersymmetric BMPV naked singularity
spacetimes in 4+1 spacetime dimensions [198], then we know that a stringy resolution of the central singularity,
which uses a domain wall of size 𝑅, relaxes the Kerr bound [199]. While in this case there is not really a bound
on 𝐽 anymore, for large enough 𝐽, the domain wall becomes so large

(
since 𝐽2 ≤ (𝑄 + 𝑅)3) that the object is

not inside its Schwarzschild radius, and is therefore, no longer compact. Therefore, in this case, one could

22Obviously, this is not rigorous when considering non-black hole spacetimes.
23𝑀, 𝑄, and 𝐽 are the mass, electric charge, and angular momentum of the spacetime respectively
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say that the 5-d superspinar surface scales with its angular momentum. In another scenario, if one assumes
a benign (from the point of view of an asymptotic observer) string-length scale modification (𝛼 ∼ 10−35m)
of the near-singular region, the eventual string-corrected object is a torus of cross-section ∼𝛼2 but of radius
𝐽, since this is the physical size (Kerr-Schild coordinates; see Figure 4.1 for clarity on the relation between
the Kerr-Schild and Boyer-Lindquist coordinates. Also see [200]) of the rotating singularity. Therefore,
our analysis automatically sets the inner boundary of the spacetime, at which we impose conditions for the
reflection/transmission of metric perturbations, at a radius of ∼𝐽 in Kerr-Schild coordinates, and it would
appear that this would be the length scale at which one would be required to match an interior solution for the
superspinar with the overspinning Kerr metric.

Of course, before one can actually deem such exotic objects to be astrophysically relevant, one must a) find an
interior metric that matches smoothly with the overspinning Kerr metric at the superspinar surface, b) establish
that they form fairly generically as endstates of gravitational collapse from regular initial data, and c) that they
are stable. While each of these problems is prima facie highly non-trivial, we consider the most tractable of
the aforementioned analyses: mode stability.

Furthermore, since one of the greatest hopes for gaining insights into the quantum nature of compact objects
has been to obtain associated signatures in gravitational wave detections from strong gravity regions [201, 202],
it could be worthwhile, from such a perspective, to study the QNF-spectrum of Kerr superspinars. Since an
interior solution is thus far unavailable, here we adopt an agnostic approach w.r.t. the inner boundary condition
for metric perturbations, and parameterize the reflection coefficient at the inner boundary; then one can study
the QNF-spectrum of this object by varying the reflection coefficient there. This goes with the understanding
that if a legitimate interior metric is found, it would automatically correspond to a unique boundary condition
at the surface of the superspinar.

It is important to note that since finding a valid interior solution can be difficult, and if one fails to match
the first and second fundamentals of interior and exterior patches of a spacetime smoothly, a mode stability
analysis based on simply parametrizing the reflectivity at the matching surface would be illegal. Here we
assume that it might be possible to find an interior solution to the nearly-extremal overspinning Kerr spacetime
that admits a smooth matching at the boundary, and ask whether Kerr superspinars could be stable then. The
advantage of studying first their mode stability is in the following: If it turned out that Kerr superspinars were
mode unstable, we could immediately disregard these classical solutions, at minimal cost.

With this view, a few studies on the stability of the over-spinning Kerr geometry [69, 70, 77] were conducted and
it was suggested that superspinars would generically be unstable under various boundary conditions imposed
at the surface of the superspinar, with the variety of boundary conditions being maximal in [70]. However, the
most interesting case of near-extremal superspinars was not explored in sufficient detail, and this forms the
focus of the following section. We show that under a variety of boundary conditions QNMs decay in time and
these near-extremal superspinars are in fact mode stable. This result may have intriguing implications on the
existence and physics of very rapidly rotating compact objects in the universe. It therefore follows from our
results in [71] that, at the very least, a detailed study of physically allowed boundary conditions is necessary,
in order to decide on the stability of superspinars or similar objects.
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2.5.1 Mode Stability of Near-Extremal Kerr Superspinars24

Since we are interested in near-extremal superspinars, we can introduce 𝜖 to denote the departure from
extremality 𝑎 = 𝑀 as,

𝑎 = 𝑀 (1 − 𝜖), (2.5.12)

where 0 < |𝜖 | ≪ 1. The spacetime contains a near-extremal superspinar in the case of 𝜖 < 0, and a black hole
when 𝜖 > 0.

For the Kerr black hole, it is known that the QNFs 𝜔 approach 𝑚/2𝑀 for 𝑚 = 𝑙 in the limit of approach to
extremality, 𝜖 → 0+ [203]. Results of the numerical study [70] indicate that even for Kerr superspinars, for
these modes, one can expect the QNFs 𝜔 to approach 𝑚/2𝑀 , in the limit 𝜖 → 0−. Hence, hereafter we focus
on the modes of 𝑚 = 𝑙 and assume that 𝜔 differs from 𝑚/2𝑀 only by an infinitesimal amount, which we
parametrize by a positive constant 𝑝 as,

𝑀𝜔 − 𝑚

2
= 𝒪 (|𝜖 |𝑝) . (2.5.13)

Now, If we introduce the dimensionless radial and frequency variables respectively as,

𝑦 =
𝑟

𝑀
− 1, and �̃� = 𝑀𝜔, (2.5.14)

we can rewrite equation 2.5.11 as,

(𝑦2 − 2𝜖 + 𝜖2) d2 �̃�

d𝑦2 −
[
2i�̃�𝑦2 + 2(2i�̃� − 𝑠 − 1)𝑦 + 2i(2�̃� − 𝑚) (1 − 𝜖) + 2i�̃�𝜖2] d�̃�

d𝑦
(2.5.15)

−
[
2(2𝑠 + 1)i�̃�(𝑦 + 1) + _̃

]
�̃� = 0.

Our strategy to obtain the QNM frequency for the black hole case is as follows. First, we obtain the approximate
solutions of equation 2.5.15 in the ‘far’ and ‘near’ zones, defined respectively as max

[√︁
|𝜖 |, |𝜖 |𝑝

]
≪ 𝑦 and

𝑦 ≪ 1 separately. Then, we choose appropriate integration constants so that these solutions agree with each
other in the overlapping region, max

[√︁
|𝜖 |, |𝜖 |𝑝

]
≪ 𝑦 ≪ 1. Finally, we impose (a) the condition that there be

no incoming waves at spatial infinity on the far-zone solution, and (b) a regularity condition on the near-zone
solution at the event horizon, for black holes. A similar procedure is followed for the superspinar in order to
make clear the analogy with the black hole case, and to enable a study of the contrast between the two.

In the far-zone, equation 2.5.15 approximates to,

𝑦2 d2 �̃�

d𝑦2 −
[
2i�̃�𝑦2 + 2(2i�̃� − 𝑠 − 1)𝑦

] d�̃�
d𝑦

−
[
2(2𝑠 + 1)i�̃�(𝑦 + 1) + _̃

]
�̃� = 0, (2.5.16)

the solution of which can be written in terms of the confluent hypergeometric functions 1𝐹1 (𝛼; 𝛾; 𝑧) as,

�̃�far = 𝐴𝑦−1/2+2i�̃�+i𝛿−𝑠
1𝐹1

(
1
2
+ 2i�̃� + i𝛿 + 𝑠; 1 + 2i𝛿; 2i�̃�𝑦

)
+ 𝐵 | 𝛿→−𝛿 , (2.5.17)

24Reprinted excerpt with permission from [K.-I. Nakao, P. S. Joshi, J.-Q. Guo, P. Kocherlakota, H. Tagoshi, T. Harada, M. Patil, and
A. Królak, Phys. Lett. B 780, 410 (2018)]. Copyright (2018) by Elsevier.

https://www.sciencedirect.com/science/article/pii/S0370269318302028?via%3Dihub
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where 𝐴 and 𝐵 are integration constants, and we have introduced,

𝛿2 ≡ 4�̃�2 − 1
4
− _̃ − 𝑠(𝑠 + 1) ≃ 1

4
(7𝑚2 − 1) − 𝐸, (2.5.18)

a constant. It is to be noted that this definition for 𝛿2 differs from equation 9 of [204] due to a typo there.

For the near-zone analysis, we keep terms only of leading order in 𝜖 , and it is useful to introduce a new radial
variable, 𝑥 ≡ 𝑦 −

√
2𝜖 . Then, equation 2.5.15 approximates to,

𝑥(𝑥 + 𝜎) d2 �̃�

d𝑥2 − [2 (2i�̃� − 𝑠 − 1) 𝑥 − (𝑠 + 1) 𝜎 + 4i𝜏] d�̃�
d𝑥

−
[
2(2𝑠 + 1)i�̃� + _̃

]
�̃� = 0, (2.5.19)

where 𝜎 ≡ 2
√

2𝜖 , and 𝜏 ≡ (1 +
√

2𝜖)�̃� − 𝑚
2 . The solution of the equation above may expressed in terms of the

Gauss hypergeometric function 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑧) in the form,

�̃�near = 𝐶 𝑥−𝑠+4i𝜏/𝜎
2𝐹1 (1/2 − 2i�̃� + i𝛿 + 4i𝜏/𝜎, 1/2 − 2i�̃� − i𝛿 + 4i𝜏/𝜎; 1 − 𝑠 + 4𝑖𝜏/𝜎;−𝑥/𝜎) (2.5.20)

+ 𝐷 2𝐹1 (1/2 − 2i�̃� + i𝛿 + 𝑠, 1/2 − 2i�̃� − i𝛿 + 𝑠; 1 + 𝑠 − 4i𝜏/𝜎;−𝑥/𝜎),

where 𝐶 and 𝐷 are integration constants.

As noted above, both the far- and near-zone solutions, given in equations 2.5.17 and 2.5.20 respectively, are
valid in the over-lapping region, max

[√︁
|𝜖 |, |𝜖 |𝑝

]
≪ 𝑦 ≪ 1. In the limit 𝑦 → 0, the far-zone solution (2.5.17)

behaves as,
lim
𝑦→0

�̃�far → 𝐴𝑦−1/2+2i�̃�+i𝛿−𝑠 + 𝐵𝑦−1/2+2i�̃�−i𝛿−𝑠 . (2.5.21)

This is essentially the behaviour of the far-zone solution (2.5.17) at the inner edge of the overlapping region,
i.e. at 𝑦 ≈ max

[√︁
|𝜖 |, |𝜖 |𝑝

]
. Further, in the limit 𝑦 → ∞, the near-zone solution (2.5.20) behaves as,

lim
𝑦→∞

�̃�near → A𝑦−1/2+2i�̃�+i𝛿−𝑠 + B𝑦−1/2+2i�̃�−i𝛿−𝑠 , (2.5.22)

where A and B may be written in terms of the near-zone integration constants as,

A = 𝜎1/2−2i�̃�−i𝛿Γ(2i𝛿) (2.5.23)

×
[

𝐶𝜎4i𝜏/𝜎Γ(1 − 𝑠 + 4i𝜏/𝜎)
Γ(1/2 + 2i�̃� + i𝛿 − 𝑠)Γ(1/2 − 2i�̃� + i𝛿 + 4i𝜏/𝜎) +

𝐷𝜎𝑠Γ(1 − 4i𝜏/𝜎 + 𝑠)
Γ(1/2 − 2i�̃� + i𝛿 + 𝑠)Γ(1/2 + 2i�̃� + i𝛿 − 4i𝜏/𝜎)

]
,

B = A| 𝛿→−𝛿 . (2.5.24)

We have introduced A and B so that the matching condition can simply be immediately read off by glancing
at equations 2.5.21 and 2.5.22 to be,

𝐴 = A and 𝐵 = B. (2.5.25)

Now, to set the condition that there be no incoming radiation from spatial infinity, we must consider the other
limit, 𝑦 → ∞, of the far-zone solution (2.5.17). This gives,

lim
𝑦→∞

�̃�far ≃ 𝑍out 𝑦
−(1−4i�̃�)𝑒2i�̃�𝑦 + 𝑍in 𝑦

−(2𝑠+1) ,
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where 𝑍out and 𝑍in are identified as the outgoing and ingoing solutions at spatial infinity, and are given as,

𝑍in = 𝐴
(−2i�̃�)−1/2−2i�̃�−i𝛿−𝑠Γ(1 + 2i𝛿)

Γ(1/2 − 2i�̃� + i𝛿 − 𝑠) + 𝐵 (−2i�̃�)−1/2−2i�̃�+i𝛿−𝑠Γ(1 − 2i𝛿)
Γ(1/2 − 2i�̃� − i𝛿 − 𝑠) , (2.5.26)

𝑍out = 𝑍in |𝑠→−𝑠, �̃�→−�̃� .

Thus, together with the matching condition, given in equation 2.5.25, and the condition that there be no
incoming waves at spatial infinity, 𝑍in = 0, we obtain,

A (−2i�̃�)−i𝛿Γ(1 + 2i𝛿)
Γ(1/2 − 2i�̃� + i𝛿 − 𝑠) + (𝛿 → −𝛿) = 0 (2.5.27)

Now we must address the boundary condition on the inner edge of the domain of interest, 𝑟 → 𝑀 . Here
it is worthwhile to notice that, in the black hole case (𝜖 > 0), the regular singular point 𝑥 = 0 of the near-
zone equation (2.5.19) corresponds to the location of the event horizon. Since we impose the regularity of
the solution at the event horizon, the integration constant 𝐶 must vanish (note 𝑠 = 2). By contrast, in the
superspinar case (𝜖 < 0), the regular singular points 𝑥 = 0 and 𝑥 = −𝜎 of the same equation are equivalent
to 𝑦 = ±i

√︁
2|𝜖 |. Hence, in the superspinar case, there is no regular singular point of the near-zone equation

(2.5.19) on the real axis of 𝑦, or equivalently, on the real axis of 𝑟 . It is important to note that the implication
of this distinct feature (pole structure) is that the regularity requirement of the solution on the real axis of 𝑦
does not lead to any condition on the integration constants 𝐶 and 𝐷 in the superspinar case. However, in order
to obtain the QNFs in the superspinar case, we still need to fix 𝐶 and 𝐷. For this purpose, we impose identical
conditions for both the black hole (𝜖 > 0) and the superspinar (𝜖 < 0) on the inner boundary as,

𝐶 = 0 and 𝐷 = 1. (2.5.28)

Substituting equations 2.5.23 and 2.5.24 along with the inner boundary condition given in equation 2.5.28 into
the quasi-normal mode condition given in equation 2.5.27, we have,

− Γ(2i𝛿)Γ(1 + 2i𝛿)
Γ(−2i𝛿)Γ(1 − 2i𝛿)

Γ(1/2 − 2i�̃� − i𝛿 + 𝑠)Γ(1/2 − 2i�̃� − i𝛿 − 𝑠)
Γ(1/2 − 2i�̃� + i𝛿 + 𝑠)Γ(1/2 − 2i�̃� + i𝛿 − 𝑠) = (−2i�̃�𝜎)2i𝛿 Γ(1/2 + 2i�̃� + i𝛿 − 4i𝜏/𝜎)

Γ(1/2 + 2i�̃� − i𝛿 − 4i𝜏/𝜎) .
(2.5.29)

The above equation determines the quasi-normal mode frequency �̃� of a near-extremal Kerr superspinar under
the inner boundary conditions given in equation 2.5.28, and the (informed) assumption that the QNF spectrum
satisfies equation 2.5.13.

We now discuss the consequence of using the QNF ansatz (2.5.13), �̃� → 𝑚/2 as 𝑎 → 𝑀 , or equivalently
𝜖 → 0±. It is known that 𝛿 is real and positive in this limit, i.e., for the extremal black hole case 𝑎 = 𝑀 , for
|𝑠 | = 2 and 𝑙 = |𝑚 | ≥ 2 [205, 206], and we restrict ourselves to a study of these modes of the superspinar.
Then, the left hand side of equation 2.5.29 will have a finite limit for 𝜖 → 0±, which we express in the form,
L. H. S. = 𝑞ei𝜒. In order for the R. H. S. of the same equation to also have a finite limit, the equation �̃� ∝ 𝜎−1

or 𝜏/𝜎 → ∞ must hold in this limit. Here note that 𝜎 → 0, in the limit of 𝜖 → 0±. This fact implies that the
former is inconsistent with our assumption, and 𝜏/𝜎 should diverge in the limit of 𝜖 → 0±, i.e., 𝑝 in equation
2.5.13) should satisfy 𝑝 < 1/2.
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Then, following the arguments given in [204], we have

�̃�R ≃ 𝑚

2
− 1

4𝑚
e(𝜒−2𝑘 𝜋)/2𝛿 cos Z

�̃�I ≃ − 1
4𝑚

e(𝜒−2𝑘 𝜋)/2𝛿 sin Z,

for both the black hole and the superspinar, where 𝑘 is an integer number consistent with |𝜖 |1/2 ≪ e(𝜒−2𝑘 𝜋)/2𝛿 =

𝒪( |𝜖 |𝑝) because of 0 < 𝑝 < 1/2. Since 𝜒 and 𝛿 will be of the order |𝜖 |0, we have 𝑘 ≪ − ln |𝜖 | which
corresponds to equation 28 of [204]. An estimate of Z is available for Kerr black holes and superspinars, in
case of �̃� ≃ 𝑚/2; 0 < Z < 2 [82].

Thus the imaginary part of the QNF �̃�I is negative. This result implies that, for the choice of boundary
condition we have used at on the inner edge of the spacetime (2.5.28), both near-extremal Kerr black holes
and superspinars are stable against gravitational wave mode perturbations with 𝑚 = 𝑙. That is, the existence
of at least one boundary condition under which the superspinar is stable against the gravitational perturbations
of 𝑚 = 𝑙 has been obtained. However, it must be noted that the physical meaning of the boundary condition is
still unclear and needs to be further investigated.

2.6 Comments on Mode vs. Linear Stability

As we have seen, a mode stability analysis consists of studying the boundedness of linear perturbations that
possess a harmonic time behaviour, i.e. they can be expressed in the form h(𝑡, 𝑟, \, 𝜙) = ei𝜔𝑡 h̃(𝑟, \, 𝜙). Given
appropriate boundary conditions, for such perturbations, a linear stability analysis essentially reduces to an
eigenvalue problem. Now, since 𝜔 is complex, the linear differential operator ℒg is not of the Sturm-Liouville
variety. Most importantly, this implies that one must now check whether the quasi-normal modes form a
complete basis.

To answer such a question, we must start by analysing the time-dependent linearized equation (like equation
2.4.10). A standard technique for identifying important contributions to the solution of such a differential
equation consists of closing the contour of integration of the linearized equation. This relates analyticity
properties of the Laplace-transformed solution to the asymptotic behaviour of the time-dependent solution
[74]. The absence of essential singularities inside the contour implies that the integral evaluates to a sum over
the residues inside the contour.

Typically, one closes the contour with a half circle at infinity in either the right or left half-plane. In fact,
such a closure at |𝑠 | = ∞ should be regarded as the limit of a sequence of closures at finite values of |𝑠 |.
Here, 𝑠 is the Laplace transform variable and is not to be confused with a spin weight. If we are fortunate
enough to be studying a problem where this sequence has a limit, the integral over the half circle at infinity
vanishes in this limit, and there are no essential singularities inside the contour, then roughly any solution of
the time-dependent wave equation can be represented completely by a sum over quasi-normal-mode solutions;
i.e. these quasi-normal modes form a complete set in the space of solutions.

However, this definition of completeness does not generally apply to dissipative systems since the domain of
the operator typically extends to infinity, where the quasi-normal-mode solutions diverge. Solutions of the
time-dependent problem, on the other hand, have to be bounded everywhere. In particular, for perturbations of
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black holes, essential singularities arise. If one tries to remove them (typically they are at 𝑠 = 0), the piece of
the integral corresponding to the closing of the contour at |𝑠 | = ∞ produces a non-vanishing contribution. This
implies, it turns out, that the quasi-normal modes of the Regge-Wheeler or the Zerilli potential, for example,
do not in fact form a complete set. Therefore, a result of mode stability cannot, by definition, in such systems
suffice to make a statement about full linear stability.

2.7 Non-linear Stability in General Relativity25

We begin with a brief review of the initial value formulation of general relativity, which is the typical setting of
stability analyses in general relativity [109, 110]. For this a discussion on the Cauchy problem of the Einstein
field equations [105–108] becomes absolutely necessary, as shall become obvious. In our discussion here, we
shall concern ourselves primarily with spacetimes devoid of matter i.e., the only degrees of freedom of such a
system are purely gravitational and the sole dynamical entity is the metric tensor 𝑔. At the end of this section,
we will mention how one could carry this analogy through to include matter.

The Einstein field equations are partial differential equations, and are essentially hyperbolic in nature. This
means that the general properties of solutions to these equations are similar to those found for the wave
equation, and we have seen this explicitly for the linearized version above. In general, they are coupled to
other partial differential equations describing the matter content of spacetime. It follows that it is reasonable
to try to determine a solution by setting initial data on a spacelike hypersurface. Thus the Cauchy problem
of the field equations must naturally be studied. Also, since the Einstein field equations are also non-linear,
there is a big difference between the local and global Cauchy problems. In particular, a solution evolving from
regular data may develop singularities.

Furthermore, as we have seen already, a special feature of the Einstein field equations is that they are
diffeomorphism invariant. If the equations are written down in an arbitrary coordinate system, then the
solutions of these coordinate equations are not uniquely determined by initial data. Diffeomorphisms map
solutions into each other. However, if the chosen diffeomorphism is the identity on the chosen Cauchy surface
up to first order, then the data are left unchanged by this transformation. In order to obtain a system for which
uniqueness in the Cauchy problem holds in the straightforward sense that it does for the wave equation, some
coordinate or gauge fixing must be carried out. We will not attempt to demonstrate here a gauge fixing for the
full non-linear field equations.

Now, a triple (Σ, 𝑞, 𝐾) with Σ a smooth orientable 3-manifold, 𝑞 a Riemannian metric and 𝐾 a symmetric
2-tensor field, both on Σ, forms a valid initial data set for the vacuum Einstein field equations (2.1.2) if
the geometry initial data fields 𝑑g ≡ (𝑞, 𝐾) satisfy certain constraint equations. Given such an initial data
set, one expects to generate a 4-dimensional spacetime (M, 𝑔) and a one-parameter family of embeddings
\ : Σ ×R→ M such that 𝑔 satisfies the EFEs (2.1.2), \ (Σ) forms a Cauchy hypersurface in M, and the fields
𝑞 and 𝐾 are the first and second fundamentals respectively of Σ in (M, 𝑔) (see for example p. 226 of [9]).
The constraint equations mentioned above are simply the mathematical consequences of the desire that Σ ‘fit
properly’ into M, i.e. 𝑑g satisfies what are called the Gauss and Codazzi-Mainardi equations, which govern
the embeddings of hypersurfaces into manifolds. In the context of GR, these are usually called the Einstein

25Reprinted excerpt with permission from [P. Kocherlakota and P. S. Joshi, Arab. J. Math. (2019)]. Copyright (2019) by Springer;
We refer the reader to see also [9, 105–110, 164] for a more detailed discussion on these aspects.

https://link.springer.com/article/10.1007%2Fs40065-019-0266-4


Chapter 2 39

Hamiltonian and momentum constraint equations and are given respectively as (see for example [164]),

(3)𝑅 − 𝐾𝑖 𝑗𝐾
𝑖 𝑗 +

(
𝐾 𝑖

𝑖

)2
= 0, (2.7.1)

∇ 𝑗𝐾𝑖 𝑗 − ∇𝑖𝐾
𝑗

𝑗
= 0, (2.7.2)

where (3)𝑅 is the Ricci scalar and ∇ the covariant derivative associated with 𝑞. For insight into the structure
of the constraint differential equations we direct the reader towards [105–107]. This property that initial data
fields cannot be freely specified but must satisfy certain constraint equations is not characteristic to GR and,
for example, is also a feature of Maxwell’s equations for electromagnetism, where the constraint equation is
the Gauss law [207].

Technically, (M, \, 𝑔) is called a development of (Σ, 𝑑g) and the evolution or Cauchy problem in GR refers to
the construction of the former from the latter. The Cauchy problem of a given field theory is well-posed if for
any valid choice of initial data, there exists a solution which is consistent with that data, and the map from the
space of initial data to solutions is continuous [106]. It was shown in the seminal papers of [208, 209] that the
Cauchy problem in GR is indeed well-posed (see also Chapter 6 of [10]). Further, in [210], it was established
that each such initial data set has a unique maximal future development (M, 𝑔), namely a development which
extends every other development of the same initial data set26. It was subsequently pointed out in [211] that
for any such development (M, 𝑔), the manifold M is diffeomorphic to Σ × R, and such spacetimes are called
globally hyperbolic spacetimes. These fundamental results are critical to argue the existence of solutions in
GR and to set up the Hamiltonian formulation of GR.

In this context, the stability of a spacetime (M, 𝑔) is understood as follows. First one finds the initial data
𝑑𝑔 whose evolution under the Einstein field equations yields (M, 𝑔). Then, in the space of all allowed initial
data, one considers neighbourhoods around 𝑑g and checks whether their future developments yield metrics
𝑔′ such that “𝑔′ ≈ 𝑔,” in some sense. Depending on whether or not the neighbourhoods under consideration
are infinitesimal or not, one is conducting then either a linear or non-linear stability analysis respectively.
For example, the Kerr family of spacetimes (M, 𝑔M,a) is a 2-parameter family of solutions of the Einstein
field equations and contains the 1-parameter family of Schwarzschild solutions denoted by 𝑔M,0. Within
this family is also the Minkowski metric for which the metric can be represented as 𝑔0,0. Therefore, if a
particular member 𝑔M,a were generated by some initial data 𝑑M,a and one considers another initial data within
an infinitesimal neighbourhood of 𝑑M,a, which let us denote by 𝑑M+𝛿M,a+𝛿a, then if the future development of
the latter 𝑔M+𝛿M,a+𝛿a is such that |𝑔M+𝛿M,a+𝛿a − 𝑔M,a | ≪ 1, then one can say that the spacetime 𝑔M,a is linearly
stable. If such a statement holds for all 𝑀, 𝑎, then one can argue that the family of Kerr spacetimes is linearly
stable. To find the full extent of stability of a particular solution 𝑔M,a, one must conduct a non-linear stability
analysis which requires one examine to the future developments of initial data chosen within arbitrary, non-
infinitesimal neighbourhoods of 𝑑M,a. These issues of stability are extremely important, both from theoretical
and astrophysical standpoints, and difficult to examine and thus far, significant progress has been made and the
non-linear stability of the Minkowski spacetime [166] and the linear stability of the Schwarzschild spacetime
[112] has been established, and it has also been shown that the Kerr family of spacetimes are mode stable [68].
For more detailed and excellent discussions on stability see [110].

In the following section, we demonstrate a typical non-linear stability analysis in general relativity, in the
setting of a simplistic spherically symmetric collapse model. We will take our matter model to be that of a

26Another development (M′, \′, 𝑔′) of (Σ, 𝑑g) is called an extension of M if there is a diffeomorphism 𝛼 of M into M′ such that
\′ (Σ) = (𝛼 ◦ \) (Σ) and 𝛼∗𝑔′ = 𝑔. In particular, a maximal extension is an extension of any development of (Σ, 𝑑𝑔) [9].
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fluid with vanishing pressure since for such systems, the mass contained within a shell of arbitrary comoving
radius is conserved throughout the collapse, leading to substantial simplifications in the dynamical equations,
making a purely analytical approach tractable.

2.8 Extent of Non-Linear Stability of the Schwarzschild Black Hole27

The Datt-Oppenheimer-Snyder (DOS, [44]) solution of the Einstein field equations evolves a regular, homoge-
neous, spherically symmetric ball of dust (pressureless fluid) to a Schwarzschild black hole. We will see that
the prescription of initial data for this process corresponds to specifying the initial density to be homogeneous
throughout the matter cloud,

𝜌(𝑡 = 0, 𝑟) = 𝜌0 = const., (2.8.1)

and the initial binding energy profile of the dust cloud, characterised by 𝑓 (𝑟). We review here our findings,
reported in [104], relating to a partial non-linear stability analysis of the marginally bound ( 𝑓 = 0) DOS
collapse processes against a specific class of deformations of allowed initial data, and matter models: we will
only consider departures of the initial density profile from homogeneity. What we mean by this is that we will
consider initial density profiles 𝜌(0, 𝑟) of the form,

𝜌(0, 𝑟) = 𝜌0 − 𝜌2𝑟
2, 𝜌2 ≥ 0, (2.8.2)

(for 𝜌2 = 0, we recover the DOS collapse process) and study the local and global visibility of the eventual
singularity that forms as a result of continual collapse. This will give us the size of the region in the (restricted)
space of initial data (i.e., the 𝜌0-𝜌2 parameter space), around (𝜌0, 0), whose evolutions under Einstein field
equations result in black holes. If the size of this region is an infinitesimal open set around (𝜌0, 0), we will
conclude that the DOS collapse process is linearly stable against changes in initial data. However, if this
region is larger, then this will provide us with a measure of the extent to which the DOS collapse process is
non-linearly stable against changes in initial data.

Now, since it is known that the marginally bound DOS collapse processes sit as a one-parameter (𝜌0) subclass
of the marginally-bound Lemaître-Tolman-Bondi (LTB [45]) solutions, which have an entire square integrable-
function’s worth of freedom (corresponding to the initial density profile of the matter 𝜌(0, 𝑟)) that can be freely
prescribed, the evolutions of the initial data corresponding to the inhomogeneous initial density profiles given
in equation 2.8.2 are already known. We avoid the term proportional to 𝑟 to avoid density cusps at the centre
of the collapsing cloud (see §2.8.2 below). Now, following [50], we analyse the structure of the singularity
that forms in the class of marginally bound LTB collapse models with initial density profiles given above
(2.8.2). A more exhaustive non-linear stability analysis of the formation of a Schwarzschild black hole as
an end-state of the Datt-Oppenheimer-Snyder (DOS) collapse process incorporating recent results [212–215]
will be reported elsewhere.

27Reprinted excerpt with permission from [P. Kocherlakota and P. S. Joshi, Arab. J. Math. (2019)]. Copyright (2019) by Springer.

https://link.springer.com/article/10.1007%2Fs40065-019-0266-4
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2.8.1 Dynamics of Dust Collapse

The spacetime geometry associated with a spherically symmetric collapsing cloud of matter is described by
the (interior) metric,

d𝑠2 = −e2a (𝑡 ,𝑟) d𝑡2 + 𝑅′2 (𝑡, 𝑟)
1 + 𝑓 (𝑡, 𝑟) d𝑟2 + 𝑅(𝑡, 𝑟)2 dΩ2, (2.8.3)

where in the above (𝑡, 𝑟, \, 𝜙) are Langrangian coordinates, comoving with the matter field, i.e. in these
coordinates the matter four-velocity is given as 𝑢𝛼 = e−a𝛿𝛼𝑡 . The range of the radial coordinate is 0 ≤ 𝑟 ≤ 𝑟B,
where 𝑟B is the boundary of the matter cloud and we have written 𝑔𝑟𝑟 in this form, anticipating convenience.
The ′ denotes a derivative w.r.t. 𝑟 and

dΩ2 = d\2 + sin2 \ d𝜙2 (2.8.4)

is the standard metric on a unit two-sphere. The metric function a is related to the redshift, 𝑅 is the proper
radius of a shell of collapsing matter present at a comoving radius 𝑟 and time 𝑡, and 𝑓 characterizes the
binding energy profile of the collapsing cloud [11]. In anticipation of its immediate use, we now introduce the
Misner-Sharp mass function 𝐹 (𝑡, 𝑟) which measures the amount of mass contained within a shell of comoving
radius 𝑟 at a time 𝑡 is given as [216, 217],

𝐹 (𝑡, 𝑟) ≡ 𝑅
(
1 − 𝑔𝛼𝛽𝜕𝛼𝑅 𝜕𝛽𝑅

)
= 𝑅

(
e−2a ¤𝑅2 − 𝑓 (𝑡, 𝑟)

)
, (2.8.5)

where 𝑔 is the metric tensor obtained from equation 2.8.3. Since this metric only describes a portion of the
spacetime (0 ≤ 𝑟 ≤ 𝑟B), if one wants to consider the collapse of matter that has compact support on the initial
spacelike hypersurface 𝑡 = 0, to complete the spacetime one must match this interior collapsing metric at
the boundary with an appropriate exterior metric, which via Birkhoff’s theorem [81], must necessarily be the
Schwarzschild metric.

The interior collapsing metric 𝑔 contains an apparent horizon, which is the marginally trapped surface, if the
radial null expansion scalar, defined as [218]

\ (𝑡, 𝑟) ≡ 𝑔𝛼𝛽𝜕𝛼𝑅 𝜕𝛽𝑅 (2.8.6)

vanishes. Therefore, it is seen from equation 2.8.5 that the apparent horizon curve 𝑡AH (𝑟), which tracks the
location of the apparent horizon during the evolution of the collapse can be found from,

𝐹 (𝑡AH (𝑟), 𝑟) = 𝑅(𝑡AH (𝑟), 𝑟). (2.8.7)

Now, if we consider the spherically symmetric collapse of a fluid with vanishing pressure in this choice of
comoving coordinates, we can write the associated matter stress-energy tensor as,

𝑇
`
a = diag(−𝜌, 0, 0, 0). (2.8.8)

The choice to consider fluids with vanishing pressure 𝑝𝑟 = 𝑝\ = 0 greatly simplifies the collapse evolution
(see for example §4.2 of [212]). Firstly, 𝐹 = 𝐹 (𝑟) and 𝑓 = 𝑓 (𝑟) become time independent and are therefore
completely set by their initial values; 𝐹, 𝑓 are no longer dynamical functions. Further, a does not depend on
𝑟 and a = a(𝑡) i.e., by rescaling time for the interior metric, we can set a = 0. Then the governing EFEs,
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G
`
a = 𝑇

`
a , for the evolution of such a fluid are given as,

𝜌 =
𝐹 ′

𝑅2𝑅′ , (2.8.9)

¤𝑅 = −
√︂
𝐹

𝑅
+ 𝑓 , (2.8.10)

where in the above we have rewritten equation 2.8.5) as equation 2.8.10 and have chosen the negative root
since we are interested here in collapsing solutions.

Also, throughout the collapse process we shall require that the weak energy condition is satisfied everywhere
i.e. 𝑇`a𝑣`𝑣a ≥ 0 for all non-spacelike vectors 𝑣`. This implies that the energy density is everywhere positive
𝜌 ≥ 0, including near 𝑟 = 0. Singularities are points of spacetime where the usual differentiability and manifold
structures break down. They are characterized by divergences in the matter energy density or curvature
invariants constructed from the Riemann curvature tensor, like the Kretschmann scalar 𝒦 ≡ 𝑅`a𝜌𝜎𝑅

`a𝜌𝜎 .
As can be seen from equation 2.8.9, the energy density diverges when 𝑅 = 0 or when 𝑅′ = 0. The latter
condition corresponds to the collision of different radial shells of matter, which cause what are known as
‘shell-crossing singularities.’ These types of singularities are weak singularities and are removable by a
suitable change of coordinates (see for example §6.8 of [11] for further discussion; also see [212]). Therefore,
we shall also require that 𝑅 satisfy 𝑅′ ≠ 0. Further, for the weak energy condition to hold on the initial epoch
𝜌(0, 𝑟) ≥ 0 from which the collapse begins, we require that 𝐹 ′ ≥ 0 from equation 2.8.11. Now, for collapse
processes of interest here we have 𝐹 = 𝐹 (𝑟) which means that for the energy condition to hold at all times
𝜌(𝑡, 𝑟) ≥ 0, we require specifically from equation 2.8.9 that 𝑅′ > 0. Finally, 𝑅(𝑡s (𝑟), 𝑟) = 0 are genuine
spacetime singularities, also called shell-focussing singularities, and 𝑡s (𝑟) is called the singularity curve i.e. it
is the time at which the shell at comoving radius 𝑟 reaches the singularity. Therefore the coordinate time runs
from −∞ < 𝑡 < 𝑡s (𝑟).

2.8.2 Initial Data

We now discuss how one sets valid initial data, 𝑑 = {𝑅(0, 𝑟), 𝑓 (𝑟), ¤𝑅(0, 𝑟), 𝜌(0, 𝑟), 𝐹 (𝑟), ¤𝜌(0, 𝑟)}. We
can partition this set of initial data heuristically into geometry 𝑑g = {𝑅(0, 𝑟), 𝑓 (𝑟), ¤𝑅(0, 𝑟)} and matter
𝑑m = {𝜌(0, 𝑟), 𝐹 (𝑟), ¤𝜌(0, 𝑟)} initial data. By valid initial data, we mean that the set of functions listed in 𝑑
must be chosen such that they respect the Hamiltonian and momentum constraints, are smooth and are such
that no singularity or apparent horizon is present on the Cauchy surface, 𝑡 = 0.

First we shall inquire after the number of independent initial data functions in this collapse model. If, without
loss of generality, we choose the initial scaling as 𝑅(0, 𝑟)=𝑟 , then prescribing the initial density profile 𝜌(0, 𝑟)
at the initial epoch fixes the matter profile of the cloud 𝐹 (𝑟) from equation 2.8.9 as,

𝐹 (𝑟) =
∫ 𝑟

0
d𝑟𝜌(0, 𝑟)𝑟2. (2.8.11)

Further, picking 𝑓 (𝑟) fixes ¤𝑅(0, 𝑟) from equation 2.8.5 and ¤𝜌(0, 𝑟) is set then from equation 2.8.9. In
summary, one is free only to pick three functions independently on the Cauchy surface 𝑡 = 0, which here will
be 𝑅(0, 𝑟), 𝑓 (𝑟), 𝜌(0, 𝑟). The remaining initial data { ¤𝑅(0, 𝑟), 𝐹 (𝑟), ¤𝜌(0, 𝑟)} are then fixed from the constraint
equations.
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Now we move to a discussion on the smoothness of initial data. The requirement that 𝜌(0, 𝑟) be smooth implies
that 𝐹 is atleast 𝒪(𝑟3) near 𝑟 = 0. Also, since realistically the centre of the collapsing cloud has non-zero
density, i.e. 𝜌(0, 0) > 0, we have also 𝐹 ′′′(0) > 0. Moreover, for ¤𝑅(0, 𝑟) to be regular, we shall require that

𝜋(𝑟) ≡ −𝑟 𝑓 (𝑟)
𝐹 (𝑟) (2.8.12)

also be regular throughout the dust cloud. Specifically, for 𝜋(𝑟) to be regular at 𝑟 = 0, we require 𝑓 to be
𝒪(𝑟2) near 𝑟 = 0. If we choose the usual scaling 𝑅(0, 𝑟) = 𝑟 , then the remaining freely specifiable initial data
( 𝑓 (𝑟), 𝜌(0, 𝑟)) will be assumed to be atleast square integrable. We will also require that there be no cusps at
the centre of the cloud and so, we will impose the restriction that 𝑓 (𝑟), 𝜌(0, 𝑟) not have terms that are odd
powers of 𝑟 near 𝑟 = 0 [219]. Further, for no trapped surfaces to exist on the Cauchy surface 𝑡 = 0, we require
𝐹 (𝑟)/𝑅(0, 𝑟) < 1. Finally, the requirement that there also be no singularity on the Cauchy surface 𝑡 = 0 must
be discussed on a case by case basis.

2.8.3 Non-linear Stability of the Datt-Oppenheimer-Snyder Collapse Process

Since the governing equations of motion (2.8.9, 2.8.10) are closed, they evolve valid initial data uniquely
and depending on the specific choice of initial data, the singularity may or may not be covered entirely from
an asymptotic observer by a horizon, corresponding to the formation of a black hole or a globally naked
singularity respectively. Here, for simplicity, we shall restrict ourselves to the class of marginally bound LTB
models ( 𝑓 = 0). For this class of collapse models, we can immediately integrate equation 2.8.10 to obtain the
scale factor 𝑅 analytically as,

𝑅(𝑡, 𝑟) = 𝑟
(
1 − 3

2

√︂
𝐹

𝑟3 𝑡

)2/3

. (2.8.13)

The energy density 𝜌(𝑡, 𝑟) is then given as,

𝜌(𝑡, 𝑟) = 𝐹 ′

𝑟2
(
1 − 3

2

√︃
𝐹

𝑟3 𝑡

) (
1 − 𝑟𝐹′

2𝐹

√︃
𝐹

𝑟3 𝑡

) . (2.8.14)

The above two equations completely specify the marginally bound LTB collapse models. The singularity 𝑡s (𝑟)
and the apparent horizon 𝑡AH (𝑟) curves are obtained from the conditions 𝑅(𝑡s (𝑟), 𝑟) = 0 and 𝑅(𝑡AH (𝑟), 𝑟) =
𝐹 (𝑟) respectively as,

𝑡s (𝑟) =
2
3

√︂
𝑟3

𝐹
, 𝑡AH (𝑟) = 𝑡s (𝑟)

[
1 −

(
𝐹

𝑟

)3/2
]
. (2.8.15)

Since we have already seen that 𝐹 is atleast𝑂 (𝑟3) and always non-negative, it is clear from the above equation
that 𝑡AH (𝑟) < 𝑡s (𝑟) for all 0 < 𝑟. Therefore, outgoing null geodesics emitted from events (𝑡s (𝑟), 𝑟) for 𝑟 ≠ 0
are all trapped. Now, to determine the causal structure of a particular model, namely whether it represents a
black hole or a globally visible naked singularity, it is necessary to examine families of radial null geodesics
emerging from the event (𝑡s (0), 0). Our analysis closely follows the procedure outlined in [50]. It is evident
from equation 2.8.3 that along future-directed radial null geodesics, we have,

d𝑡
d𝑟

= 𝑅′. (2.8.16)
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More importantly, since we are concerned with outgoing null geodesics that are emitted from (𝑡s (0), 0), we
should check whether there exist null geodesics along which d𝑅/d𝑟 > 0 at (𝑡s (0), 0), corresponding to a
positive future null expansion. Further, since 𝑅 vanishes as 𝑡 → 𝑡s (0), 𝑟 → 0, if there exists such a geodesic,
then one can find a positive constant 𝛼 such that along it, near (𝑡s (0), 0), we can write 𝑅 ∼ 𝑟𝛼. 𝛼 is initial data
dependent and, if it exists, can be found via the procedure outlined below.

Now, to analyse d𝑅/d𝑟 it is useful to change variables from 𝑟 to 𝑢 = 𝑟𝛼 so that along null geodesics we can
write,

d𝑅
d𝑢

=
1

𝛼𝑟𝛼−1

[
𝑅′ + ¤𝑅 d𝑡

d𝑟

]
=

[
1 −

√︂
Λ

𝑋

]
𝑅′

𝛼𝑟𝛼−1 ≡
[
1 −

√︂
Λ

𝑋

]
𝐻 (𝑋, 𝑢)
𝛼

, (2.8.17)

where we have introduced Λ(𝑢) = 𝐹 (𝑢)/𝑢 and 𝑋 (𝑅, 𝑢) = 𝑅/𝑢. Further, 𝐻 (𝑋, 𝑢) defined as above can be
written out as,

𝐻 (𝑋, 𝑢) = 𝑢
3−3𝛼

2𝛼
√
𝑋

(
1 − [

3

)
+ [𝑋

3
, (2.8.18)

where [(𝑢) = 𝑢1/𝛼𝐹 ′/𝐹. Note that the event (𝑡, 𝑟) = (𝑡s (0), 0) is now at (𝑅, 𝑢) = (0, 0). The above
differential equation (2.8.17) has a singular point at (𝑋, 𝑢) = (0, 0) and if there exist null geodesics that meet
this singularity, we can write along them,

lim
𝑅→0,𝑟→0

𝑅

𝑢
= lim

𝑅→0,𝑟→0

d𝑅
d𝑢

= 𝑋0. (2.8.19)

and we are assured that they are outgoing if 𝑋0 > 0. Therefore, the necessary and sufficient condition for the
singularity to be visible in dust collapse is that 𝑋0, which can be found as the root of the algebraic equation,

𝑋 =

[
1 −

√︂
Λ0

𝑋

]
𝐻 (𝑋, 0)
𝛼

, (2.8.20)

exists and is positive. Here we have introduced Λ0 = lim𝑢→0 Λ(𝑢). The parameter 𝛼 is chosen, when possible,
such that 𝑑𝑅/𝑑𝑢 is well defined along such null geodesics, i.e. 𝐻 (𝑋, 0) is well defined.

The existence of a real positive root of equation 2.8.20 ensures that a family of outgoing null geodesics
terminates at the singularity in the past and guarantees that the singularity is naked; when no real positive
roots exist, the singularity is space-like and the spacetime contains an DOS-like black hole. Even when a
real positive root 𝑋0 of equation 2.8.20 exists, whether or not the singularity is globally visible (visible to
asymptotic observers) depends on the initial density profile (or equivalently the mass function 𝐹), as we
discuss below. A singularity is globally visible if and only if there exist families of outgoing null geodesics
that emanate from the singularity and have a positive future null expansion. This condition is given as (see
§III.C of [50]),

[Λ < 𝛼𝑋0. (2.8.21)

The above condition must be satisfied along null geodesics that are outgoing from the the singularity through-
out the matter cloud i.e., for 0 ≤ 𝑟 ≤ 𝑟b. Outgoing null geodesics emanating from the singularity that satisfy
this condition continue to remain outside the apparent horizon as they move into the future till they reach the
boundary of the dust cloud. These trajectories then reach future null infinity in the exterior Schwarzschild
region.
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Figure 2.2: The space of initial data of the marginally bound Lemaître-Tolman-Bondi dust collapse models
with a quadratic initial density profile 𝜌(0, 𝑟) = 𝜌0 − 𝜌2𝑟

2 (𝜌2 ≥ 0) is parametrized by (𝜌0, 𝜌2). Here we
indicate by the shaded region the set of initial data that develop black holes. The complementary region, in
white, corresponds to the set of initial data for which the spacetime contains a globally visible naked singularity.
Although here we have only displayed the region 0 ≤ 𝜌0 ≤ 1 of the parameter space, it is evident from equation
2.8.27 that this partitioning is representative of the entire parameter space 𝜌0−𝜌2. Also, since we require that the
energy condition 𝜌 ≥ 0 be satisfied throughout the cloud, its maximum radius cannot exceed 𝑟b, max =

√︁
𝜌0/𝜌2.

Now, for the choice of initial data we are interested in, the initial density profile is given as,

𝜌(0, 𝑟) = 𝜌0 − 𝜌2𝑟
2, with 𝜌2 ≥ 0. (2.8.22)

Then we can expand 𝐻 (𝑋, 𝑢) around 𝑢 = 0 to leading order for each term in equation 2.8.18 to obtain,

𝐻 (𝑋, 0) = 1
√
𝑋

2𝜌2

5𝜌0
𝑢

7−3𝛼
2𝛼 + 𝑋. (2.8.23)

It is evident that for 𝐻 (𝑋, 0) to be well defined, we must set 𝛼 ≤ 7/3. However, we obtain a real root 𝑋0 of
the ‘root equation’ (2.8.20) only for 𝛼 = 7/3, which is now given as,

7
3
𝑋 =

1
√
𝑋

2𝜌2

5𝜌0
+ 𝑋. (2.8.24)

That is, 𝑋3/2
0 = 3𝜌2/10𝜌0. Therefore, with the slightest deviation from homogeneity (𝜌2 > 0), the LTB

singularity becomes locally naked. Further, the condition for global visibility (2.8.21) can be written as,

(
𝜌0 − 𝜌2𝑟

2
)
𝑟2/3 <

7
3

(
3

10
𝜌2

𝜌0

)2/3
. (2.8.25)

This inequality must hold for the largest value of the expression on the left, which is attained at 𝑟 =
√︁
𝜌0/4𝜌2.

Then we can write, (
𝜌0 − 𝜌2

𝜌0

4𝜌2

) (
𝜌0

4𝜌2

)1/3
<

7
3

(
3

10
𝜌2

𝜌0

)2/3
, (2.8.26)
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to get,
𝜌2

0
𝜌2

<

(
73 · 44

3 · 102

)1/3

≈ 6.6395. (2.8.27)

Using the above inequality, in figure 2.2, we partition the 𝜌0 − 𝜌2 parameter space into regions that develop
black holes and globally visible naked singularities at the end of gravitational collapse in blue and white
respectively, to obtain insight into the extent of the stability of the formation process of a Schwarzschild black
hole from the gravitational collapse of a marginally bound, spherically symmetric ball of dust.

Equivalently, if we impose the condition that the initial density of the dust cloud vanishes at its boundary i.e.,
𝜌(0, 𝑟𝑏) = 0, then we obtain 𝑟𝑏 =

√︁
𝜌0/𝜌2 for such a cloud. We can now equivalently parametrize the space

of allowed initial data using the ADM mass 𝑀 of the cloud and its initial radial size 𝑟𝑏. In terms of what we
call the initial compactness parameter 𝜒 for this cloud,

𝜒 ≡ 𝑀

𝑟𝑏
=

1
15
𝜌2

0
𝜌2
, (2.8.28)

the above global visibility condition (2.8.27) can be rewritten as,

𝜒 ≲ 0.4426. (2.8.29)

Thus, for a marginally bound collapsing dust cloud with the density profile 𝜌(0, 𝑟) = 𝜌0 − 𝜌2𝑟
2, the cloud

must start off sufficiently extended i.e., it must have a small enough mass to radius ratio (or low compactness)
in order to form a global naked singularity. If the cloud is more compact than the above limit, the collapse still
leads to a naked singularity, but it is of the local variety. However, when the cloud is perfectly homogeneous
at the initial epoch (𝜌2 = 0), then the eventual singularity is not visible even locally. If we introduce the
Schwarzschild (or gravitational) radius of a cloud of total mass 𝑀 as 𝑟Schw = 2𝑀 , then the above equation can
also be written as,

1.1297 𝑟Schw ≲ 𝑟𝑏 . (2.8.30)

That is, for these models, if initial radius of the dust cloud is larger than about 1.1297 times its Schwarzschild
radius, it ends up forming a globally visible naked singularity. Figure 2.2 indicates the sensitivity of the nature
of the eventual singularity, that forms in marginally bound dust collapse, on initial data, i.e. it is demonstrative
of the size of the basin of attraction of the Schwarzschild family of spacetime metrics.

2.9 A Geometric Approach to Stability in Classical Mechanics and the
attempt to jump to GR28

Statements regarding the various notions of stability in GR are typically made in the initial value formulation
of GR and there are several excellent review articles in the literature on the same [105–110]. We propose here
that restating these notions using symplectic geometry earns us substantial insight since one can then draw
formal analogies between the seemingly abstruse notions of stability of spacetimes in general relativity and
the more familiar notions of stability in classical Galelei-Newton mechanics.

28Reprinted excerpt with permission from [P. Kocherlakota and P. S. Joshi, Arab. J. Math. (2019)]. Copyright (2019) by Springer.

https://link.springer.com/article/10.1007%2Fs40065-019-0266-4
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Therefore, in this section, we review the formal statements of non-linear, linear and mode stability of dynamical
systems in classical Galelei-Newton mechanics. We begin with a quick summary of Hamilton’s equations and
in §2.9.1, we restate their dynamical content in the language of symplectic geometry. In specific, Hamilton’s
equations can equivalently be thought of as being the flow equations of an appropriately defined symplectic
Hamiltonian vector field, with trajectories in phase space corresponding to flows of this vector field. We
present the construction of the phase space of a classical mechanical system, which is a symplectic manifold,
discuss what constitutes a Hamiltonian system and introduce the concept of the flow of the aforementioned
Hamiltonian vector field. Since our eventual aim is to discuss the various formulations of stability analyses
of such dynamical systems, we will also define ‘tangent (to the Hamiltonian vector field) flows.’ In §2.9.2,
we discuss the various notions of stability and it will become apparent that this geometric approach supplies
valuable insight.

Our discussions here will be limited to autonomous or time-independent Hamiltonian dynamical systems,
whose descriptions on symplectic manifolds is well established [220–227]. We take the view that a discussion
of non-autonomous Hamiltonian systems does not add substantial additional insight towards our primary
goal of highlighting the analogy between the notions of stability in CM and GR. Further, noting that non-
autonomous Hamiltonian dynamical systems can, in various settings, be replaced by autonomous Hamiltonian
dynamical systems defined on ‘extended phase space’ (see for example [228, 229]), we shall conveniently omit
a review of such systems.

Now, in the canonical Hamiltonian formulation of CM, an arbitrary instantaneous state of a dynamical system
with 𝑛-degrees of freedom is characterized by specifying its generalised coordinates (𝑞1, 𝑞2, · · · , 𝑞𝑛) and
momenta (𝑝1, 𝑝2, · · · , 𝑝𝑛). The collection of all such possible states is called its phase space. Then, given a
Hamiltonian function 𝐻 (𝑞1, 𝑞2, · · · , 𝑞𝑛, 𝑝1, 𝑝2, · · · , 𝑝𝑛) defined over phase space, the governing dynamical
equations are the Hamilton equations given as,

d𝑞𝑖

d𝑡
=
𝜕𝐻

𝜕𝑝𝑖
,

d𝑝𝑖
d𝑡

= − 𝜕𝐻
𝜕𝑞𝑖

. (2.9.1)

That is, given a specific initial state (𝑞1 (0), 𝑞2 (0), · · · , 𝑞𝑛 (0), 𝑝1 (0), 𝑝2 (0), · · · , 𝑝𝑛 (0)) of the system, its
unique future time evoution is obtained by solving the initial value problem of Hamilton’s equations.

2.9.1 Dynamics using Symplectic Geometry in Classical Mechanics

The instantaneous configuration of an autonomous dynamical system, in classical mechanics, is described
by the values of the 𝑛-generalized coordinates (𝑞1, 𝑞2, · · · , 𝑞𝑛) and corresponds to a particular point 𝑞 in
configuration space 𝑄. An element in the cotangent bundle 𝑇∗𝑄 of configuration space consists of a 1-form
defined in the cotangent space 𝑇∗

𝑞𝑄 at every point 𝑞 ∈ 𝑄, and such a form is given by its 𝑛-components
(𝑝1, 𝑝2, · · · , 𝑝𝑛), which characterize the instantaneous generalized momentum of the system of interest (see
for example Ch. 8 of [221]). These 2𝑛 numbers, denoted succinctly by 𝑧𝑎 ≡ (𝑞1, 𝑞2, · · · , 𝑞𝑛, 𝑝1, 𝑝2, · · · , 𝑝𝑛),
with the index 𝑎 running from 1 to 2𝑛, form a collection of local coordinates for points in 𝑇∗𝑄, which can
then immediately be identified as the momentum phase space (henceforth, just phase space) of the dynamical
system under consideration.

Further, since phase space is the cotangent bundle of a smooth manifold, it comes naturally equipped with
a symplectic structure and is therefore a symplectic manifold; i.e., there exists a closed, non-degenerate
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differential 2-form 𝜔 on 𝑇∗𝑄. In the current context, this symplectic 2-form is simply given as,

𝜔 =

𝑛∑︁
𝑖=1

d𝑝𝑖 ∧ d𝑞𝑖 . (2.9.2)

Since 𝜔 is non-degenerate, it sets up an isomorphism from the tangent bundle to the cotangent bundle of
phase space, 𝜔 : 𝑇Π → 𝑇∗Π, where we have introduced Π ≡ 𝑇∗𝑄 to denote phase space. Then for every
smooth, real-valued function 𝐻 : Π → R, one can associate a unique vector field 𝑋𝐻 via 𝜔(𝑋𝐻 , •) = −d𝐻.
Introducing the inverse isomorphism, Ω : 𝑇∗Π → 𝑇Π, Ω = 𝜔−1, which in local coordinates is given as,

Ω𝑎𝑏 =

[
0𝑛 𝐼𝑛

−𝐼𝑛 0𝑛

]
, (2.9.3)

where 𝑂𝑛 and 𝐼𝑛 are the 𝑛-dimensional zero and identity matrices, we find 𝑋𝐻 ≡ Ω d𝐻. And in local
coordinates we can write,

𝑋𝑎
𝐻 = Ω𝑎𝑏𝜕𝑏𝐻 = Ω𝑎𝑏 𝜕𝐻

𝜕𝑧𝑏
=

(
𝜕𝐻

𝜕𝑝1
,
𝜕𝐻

𝜕𝑝2
, · · · , 𝜕𝐻

𝜕𝑝𝑛
,− 𝜕𝐻
𝑑𝑞1 ,−

𝜕𝐻

𝑑𝑞2 , · · · ,−
𝜕𝐻

𝑑𝑞𝑛

)
. (2.9.4)

𝑋𝐻 is a symplectic vector field since it leaves the symplectic structure invariant, i.e. it satisfies ℒ𝑋𝐻
𝜔 = 0,

where ℒ𝑋𝐻
is the Lie-derivative w.r.t. 𝑋𝐻 . Any such function 𝐻 is called a Hamiltonian function and 𝑋𝐻 is

the associated symplectic Hamiltonian vector field.

The flow of 𝑋𝐻 is a 1-parameter Lie group of symplectomorphisms 𝜙𝑡
𝐻

: R × Π → Π such that for some
𝑧0 ∈ Π, 𝜙𝑡

𝐻
(𝑧0) : R→ Π is an orbit or integral curve of 𝑋𝐻 , which passes through 𝑧0 at 𝑡 = 0. Let us denote

such an orbit in local coordinates as 𝑧𝑎 (𝑡) ≡ 𝑧𝑎 (𝜙𝑡
𝐻
(𝑧0)). Then we can write,

¤𝑧𝑎 (𝑡) = 𝑋𝑎
𝐻 (𝑧(𝑡)) , 𝑧𝑎 (0) = 𝑧𝑎0 , (2.9.5)

where the overdot represents differentiation w.r.t. 𝑡. It is apparent now that Hamilton’s equations (2.9.1) are
just the local flow equations of the symplectic Hamiltonian vector field 𝑋𝐻 and 𝜙𝑡

𝐻
(𝑧0) is the unique trajectory

or future development in phase space of the Hamiltonian system with initial data 𝑧0. Finally, we define a
Hamiltonian system itself as being given by the triple (Π, 𝜔, 𝑋𝐻 ). We also note that while we have used
local coordinates here, all of the above can be stated in a coordinate-independent manner, making it explicitly
symplectomorphism-invariant.

2.9.2 Stability of Hamiltonian Systems in Classical Mechanics

In classical mechanics, given a particular Hamiltonian system (Π, 𝜔, 𝑋𝐻 ), equilibrium corresponds to a
stationary state for variables describing such a system. This means that if a system has initial data 𝑧0 = 𝑧★, and
under Hamiltonian evolution one finds a stationary solution 𝑧𝑎 (𝑡) = 𝑧𝑎★, then 𝑧★ ∈ Π is an equilibrium point of
the dynamical system. It is clear from the flow equations (2.9.5) that the Hamiltonian vector field must have a
critical point there, i.e. we have 𝑋𝐻 (𝑧★) = 0. One can now inquire after the nature of the stability of 𝑧★. Such
questions are typically concerned with the nature of future developments of initial data ‘close’ to it; i.e. under
a ‘moderate’ change in initial data near a critical point, does the trajectory change drastically?
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Alternate notions of stability of mechanical systems exist (see for example [230]). For example, the
Kolmogorov-Arnold-Moser theory [231–234] is an example of a framework within which stability of flows
against moderate changes in the Hamiltonian function 𝐻 itself are dealt with. This sort of a structural stability
analysis is important in various scenarios [235–237]. Here however we shall purely concern ourselves with
stability of future time evolutions against changes in initial data. To qualify the nature of the stability of
equilibrium points, we provide below the formal definitions of the notions of non-linear (or Lyapunov), linear
and mode (or spectral) stability. There exist other closely related notions of stability, namely of asymptotic or
of exponential stability, but we will not go into these here (see §1 of [112] for a description of these ideas, in
the context of general relativity).

Definition: A critical point 𝑧★ ∈ Π of a Hamiltonian system (Π, 𝜔, 𝑋𝐻 ) is non-linearly stable (Lyapunov
stable) if for every neighborhood 𝑈 ⊂ Π of 𝑧★ there is a neighborhood 𝑉 ⊂ 𝑈 of 𝑧★ such that for every 𝑧 ∈ 𝑉
the corresponding orbit of the Hamiltonian vector field 𝜙𝑡

𝐻
(𝑧) remains in 𝑈 for all 𝑡 ≥ 0. Further, if 𝑧★ is not

stable, it is unstable.

A non-linear stability analysis of a critical point of a dynamical system is, in general, highly non-trivial
since for arbitrary Hamiltonian functions, the associated vector field could define a non-linear flow and one
is forced to look for solutions to complicated non-linear differential equations. Therefore, the extent of the
stability (the size of the region of attraction and the behaviour of transients as they approach the equilibrium,
for instance) is typically determined by the non-linearities of the system. However, due to the complexities
involved in a non-linear stability analysis, as a preliminary measure, one considers the relatively simpler
notions of linear stability.

A linear stability analysis is concerned with studying the behaviour of the future developments of initial data
chosen within an infinitesimal neighbourhood 𝛿𝑈★ ⊂ Π of the equilibrium point 𝑧★, and whether or not
they converge to 𝑧★ at late times 𝑡 → ∞. For 𝑧 ∈ 𝛿𝑈★, we now introduce b𝑎 (𝑡) ≡ 𝑧𝑎 (𝑡) − 𝑧𝑎★. Then since
|b𝑎 (0) | ≪ 1, the Hamiltonian flow equations (2.9.5) can be rewritten as,

¤𝑧𝑎★ + ¤b𝑎 = 𝑋𝑎
𝐻 (𝑧★ + b) = 𝑋𝑎

𝐻 (𝑧★) + (ℒ𝐻★)𝑎𝑏 b
𝑏 +𝒪( |b𝑎 |2), (2.9.6)

where ℒ𝐻★ is the Jacobian of the symplectic Hamiltonian vector field 𝑋𝐻 at 𝑧★ and given as,

(ℒ𝐻★)𝑎𝑏 ≡ 𝜕𝑏𝑋𝑎
𝐻 (𝑧★) = 𝜕𝑏Ω𝑎𝑐𝜕𝑐𝐻 (𝑧★) = Ω𝑎𝑐𝜕𝑐𝜕𝑏𝐻 (𝑧★). (2.9.7)

From the above, it can be seen that ℒ𝐻★ can also be thought of as being the symplectic Hessian of the
Hamiltonian function 𝐻. ℒ𝐻★ is a constant Hamiltonian matrix, i.e. it satisfies ℒ𝑇

𝐻★
Ω + Ωℒ𝐻★ = 0. Then,

the equation of motions near a critical point, to leading order in |b𝑎 |, are given as,

¤b𝑎 = (ℒ𝐻★)𝑎𝑏 b
𝑏, (2.9.8)

The above set of equations (2.9.8) are called the linearized equations of motion (about a fixed point of the
Hamiltonian vector field), and are simply the flow equations of 𝐿𝐻★, which is therefore called the linearization
of the symplectic Hamiltonian vector field at the equilibrium point (see for example [238]). A solution b (𝑡) to
these flow equations is called the tangent flow and we are now in a position to describe the statement of linear
stability of a critical point of a Hamiltonian system.
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Definition: A critical point 𝑧★ ∈ Π of a Hamiltonian system (Π, 𝜔, 𝑋𝐻 ) is linearly stable if all orbits of
the tangent flow are bounded for all forward time.

That is, to gauge the linear stability of a dynamical system against perturbations in initial data, we want to
know whether the size of arbitrary solutions b grows, stays constant, or shrinks as 𝑡 → ∞. At simple critical
points of the symplectic Hamiltonian vector field 𝑧★, the linearization ℒ𝐻★ is non-singular, and under the
assumption of distinct eigenvalues, we can write,

b (𝑡) =
2𝑛∑︁
𝑎=1

𝑐𝑎ei𝜎𝑎𝑡𝑣𝑎, (2.9.9)

where 𝑖𝜎𝑎 and 𝑣𝑎 are the eigenvalues and eigenvectors of ℒ𝐻★ respectively. We have introduced the additional
factor of 𝑖 to match the usual convention in physics, and our discussion henceforth will be in terms of 𝜎. It
is not difficult to show that the eigenvalues of a Hamiltonian matrix come in ± pairs [221]. Consequently,
equation 2.9.9 has exponentially growing or decaying terms unless all 𝜎 lie on the real axis. When ℒ𝐻★

is singular, to perform a linear stability analysis, one must naturally look at flows of the first non-singular
higher-order symplectic derivative of the Hamiltonian function at the critical point 𝜕𝑐1𝜕𝑐2 · · · 𝜕𝑐𝑛Ω𝑎𝑏𝜕𝑏𝐻 (𝑧★).

However, studying the forward time boundedness of every solution b (𝑡) of the linearized equations of motion
is a demanding prospect, and a more tractable endeavour is to carefully examine the distribution of the eigen-
values of the Hamiltonian matrix ℒ𝐻★, to find which eigenvectors represent stable and unstable directions
in phase space. Now, the weakest statement (though still extremely useful) that can be made regarding the
stability of a dynamical system is then as follows.

Definition: A critical point 𝑧★ ∈ Π of a Hamiltonian system (Π, 𝜔, 𝑋𝐻 ) is mode stable (spectrally sta-
ble) if all eigenvalues of its corresponding linearization ℒ𝐻★ lie in the left-half plane (or equivalently when
all 𝜎 lie in the upper-half plane).

Then, eigenvectors corresponding to real 𝜎 are called normal modes and the eigenvalues 𝜎 themselves are
called normal frequencies. Normal modes are the fundamental oscillatory modes of any conservative system.
Similarly, eigenvectors corresponding to 𝜎 with non-zero imaginary parts are called quasi-normal modes
(QNMs) and the corresponding eigenvalues 𝜎 are called quasi-normal frequencies (QNFs). These are the
fundamental oscillatory modes of every dissipative system and the QNF is a complex number with two pieces
of information: its real part corresponds to the temporal oscillation and its imaginary part captures the temporal
rate of growth or decay. Therefore, from the properties of the linearization ℒ𝐻★, one can identify the local
stable and unstable manifolds of the critical point, denoted by 𝐸★𝑠 and 𝐸★𝑢, which are linear subspaces of
𝑇𝑧★Π, of dimensions given by the number of stable (Im(𝜎) ≥ 0) and unstable eigenvalues respectively, and
spanned by the relevant eigenvectors and (in the degenerate case) generalised eigenvectors [239].

We note here a well-known comment regarding the relation between mode and linear stability. Mode stability
excludes a particular type of exponentially growing solution; it does not rule out exponential growth in general
let alone show that solutions are bounded or decay. The latter would correspond to full linear stability. The
precise relation between the two, for autonomous Hamiltonian systems, is that an equilibrium is linearly
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stable if and only if it is mode stable and all the Jordan blocks of the associated linearization matrix 𝐿𝐻★ are
one-dimensional [220, 221].

In summary, when examining the stability of a critical point, the first useful thing to do is to work in the
linear approximation. However, for real applications, sometimes just a linear stability analysis can be very
misleading and one must therefore pursue a study of the full non-linear stability of equilibria. Thus, nonlinear
stability ⇒ linear stability ⇒ mode stability. Hamiltonian systems that exhibit resonance are classic examples
of dynamical systems whose equilibrium configurations are mode stable but linearly unstable (see for example
p. 33 of [224]). An example of a Hamiltonian system that has a critical point that is linearly stable but
non-linearly unstable is the famous Cherry Hamiltonian [240].

Following [241], we now introduce the notions of a dynamical attractor and its basin of attraction; their use
will become apparent in §2.9.3 when we discuss the stability of spacetimes in GR, and families of spacetimes.
A critical point 𝑧★ of a dynamical system is called an attractor if points in some strictly positive measure
neighbourhood 𝜌(𝑧★) ⊂ Π, called its realm of attraction, flow to 𝑧★ in forward asymptotic time, i.e. for every
𝑧 ∈ 𝜌(𝑧★), lim𝑡→∞ 𝜙𝑡𝐻 (𝑧) → 𝑧★. If additionally the realm of attraction of such an attractor has the topology of
an open set in Π, then it is typically called a basin of attraction, which we shall denote by 𝐵(𝑧★). Now, clearly,
such an attractor corresponds to a linearly stable critical point, since 𝐵(𝑧★) contains within it an infinitesimal
open neighbourhood of the attractor 𝛿𝑈★. Further, the size of the basin of attraction of such an attractor is
indicative of the extent of its non-linear (or Lyapunov) stability. If instead 𝜌(𝑧★) is a lower dimensional smooth
manifold, then it is generally called the stable manifold of the attractor, akin to 𝐸★𝑠 introduced above (note
however that 𝐸★𝑠 has been defined to be a local stable manifold). Such types of attractors were first discussed
in [242–244].

Further, when a dynamical system admits a compact set of critical points in phase space, one can introduce
the notion of a compact invariant set 𝐶 ⊂ Π. Such sets 𝐶 may be regarded as being generalizations of critical
points [242]. If points in some strictly positive definite measure neighbourhood of 𝐶, which we will denote
by 𝜌(𝐶) and call the realm of attraction of 𝐶, flow to 𝐶, i.e. 𝐶 =

⋃
𝜙𝑡
𝐻
(𝑧) for 𝑧 ∈ 𝜌(𝐶), then 𝐶 is called

a dynamical attractor. Completely analogous criterion for when a compact invariant set is an attractor with
a basis of attraction are discussed in [241], and the size of its basis of attraction determines the extent of its
non-linear stability.

2.9.3 Symplectic Geometry and General Relativity

Now, to restate all of the notions of mode, linear and non-linear stability of spacetimes discussed earlier into
the language of symplectic geometry, we need to define the conjugate momentum to 𝑞 and identify the phase
space of GR [245]. For this, one requires an explicit notion of time, which has the implication that one can
only consider spacetimes that are topologically of the form Σ × R, where Σ is a 3-dimensional manifold of
arbitrary, fixed topology and R is time. Due to the discussion presented above, this restriction is typically
not considered a strong limitation. However, it is useful to remember that not all solutions of the Einstein
field equations are globally hyperbolic. For example, the maximally extended Reissner-Nordstrom solution,
representing the spacetime for a spherically symmetric charged particle, has a Cauchy horizon i.e., there is
a region from which there exist past directed causal curves that do not pass through any candidate Cauchy
surface. Generally such solutions are discarded as being physically unrealistic since a desirable quality of
physical theories is that they be deterministic and that there exist a one-to-one map between the initial state
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of motion and its trajectory (‘a continuous dependence of the evolution on initial data’). However, it is still
unclear whether only globally hyperbolic spacetimes should be considered in GR [246]. Here however we
will restrict ourselves to a discussion of the stability of only globally hyperbolic spacetimes.

Further, one also requires the the symplectic structure [247] and the Hamiltonian [248] of GR, thus forming
the Hamiltonian system of interest (Π, 𝜔, 𝑋𝐻 ). Then, by analogy with the analysis for classical mechanics
presented earlier, it will become clear how one can think about the usual notions of stability of a given
spacetime. In our discussion here, we shall concern ourselves primarily with spacetimes devoid of matter
i.e., the only degrees of freedom of such a system are purely gravitational and the sole dynamical entity is
the metric tensor 𝑔. At the end of this section, we will mention how one could carry this analogy through to
include matter.

Given a particular initial data set (𝑞, 𝐾) that belongs to the space of valid initial data, one can define the
corresponding element (𝑞, 𝑝) of the phase space of general relativity Π via (see for example §20 of [164]),

𝑝𝑖 𝑗 =
√︁
|𝑞 | (𝐾 𝑖 𝑗 − 𝑞𝑖 𝑗𝐾 𝑘

𝑘), (2.9.10)

where |𝑞 | ≡ det(𝑞𝑖 𝑗 ) and 𝑝, the momentum conjugate to 𝑞, is a symmetric 2-tensor. Then, we can write the
Hamiltonian density function as [164],

HADM = 𝛼

[
−
√︁
|𝑞 | (3)𝑅 + 1√︁

|𝑞 |

(
𝑝𝑖 𝑗 𝑝𝑖 𝑗 −

1
2
|𝑝 |2

)]
− 2𝛽 𝑗∇𝑖 𝑝

𝑖 𝑗 , (2.9.11)

where 𝛼 and 𝛽 are the lapse function and the shift vector respectively, as usual, and |𝑝 | = det(𝑝𝑖 𝑗 ). The ADM
Hamiltonian is given as 𝐻ADM =

∫
Σ
HADM. With little effort, it is evident that the variation of 𝐻ADM w.r.t

𝛼, 𝛽 simply gives the constraint equations (2.7.1), rewritten in terms of 𝑞, 𝑝. The variation w.r.t the dynamical
degrees of freedom29 𝑞, 𝑝 now gives the Hamilton equations for GR,

¤𝑞𝑖 𝑗 =
2𝛼√︁
|𝑞 |

(
𝑝𝑖 𝑗 −

1
2
𝑞𝑖 𝑗 |𝑝 |

)
+ ∇(𝑖𝛽 𝑗) , (2.9.12)

¤𝑝𝑖 𝑗 = − 𝛼
√︁
|𝑞 |

(
(3)𝑅𝑖 𝑗 − 1

2
(3)𝑅𝑞𝑖 𝑗

)
+ 𝛼𝑞𝑖 𝑗

2
√︁
|𝑞 |

(
𝑝𝑚𝑛𝑝

𝑚𝑛 − 1
2
|𝑝 |2

)
− 2𝛼√︁

|𝑞 |

(
𝑝𝑖𝑘 𝑝

𝑗

𝑘
− 1

2
|𝑝 |𝑝𝑖 𝑗

)
(2.9.13)

+
√︁
|𝑞 | (∇𝑖∇ 𝑗𝛼 − 𝑞𝑖 𝑗∇𝑖∇𝑖𝛼) +

√︁
|𝑞 |∇𝑘

(
𝛽𝑘 𝑝𝑖 𝑗√︁
|𝑞 |

)
− 2𝑝𝑘 (𝑖∇𝑘𝛽

𝑗) .

The above equations are just the flow equations of the symplectic Hamiltonian vector field obtained from the
ADM Hamiltonian function 𝐻ADM. However, before one can study the stability of its critical points, one must
worry about gauge degeneracies and the construction of the reduced phase space by forming the quotient space
of the constrained phase space with the gauge orbits. Then on reduced phase space, one would be able to
successfully draw a formal analogy between the notions of stability in classical mechanics to those in general
relativity. This will be attempted elsewhere and here we only present partial results as motivation for the
extended, deeper study.

It is clear that the Minkowski metric 𝑔0,0, a stationary solution of the Einstein field equations, is a critical
point in the phase space of the ADM Hamiltonian dynamical system. Similarly, it can be seen then that

29Note that the lapse function 𝛼 and shift vector 𝛽 are not dynamical because they describe how coordinates move in time from one
hypersurface to the next and have to be fixed by four gauge conditions (see for example [172]). One simple choice corresponds to the
Gaussian normal coordinates, for example, where one sets 𝛼 = 1, 𝛽 = 0.
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the Schwarzschild one-parameter family of solutions 𝑔M,0 is a compact invariant set and the Kerr two-
parameter family of metrics 𝑔M,a forms an even larger compact invariant set in phase space. Now, the
results of Christodoulou and Klainerman [166] imply that the Minkowski solution is a dynamical (critical
point) attractor in phase space and the results of Dafermos, Holzegel and Rodnianski [112] indicate that the
Schwarzschild family of solutions is also an (compact invariant set) attractor in phase space. The basin of
attraction of the Schwarzschild attractor remains to be completely characterized, and we make a restricted
attempt to address this in §2.8.3. Now, we can express one of the most important aims of stability studies in
general relativity, with significant implications for observational astrophysics, as being to show that the full
Kerr family of solutions is an attractor, and a complete characterization of its basin of attraction will conclude
a non-linear stability analysis of the Kerr family of spacetimes.

When matter is present, the full classical action of this system is given by the Einstein–Hilbert Lagrangian
plus a piece describing the matter fields 𝜙𝑖 appearing in the theory, and extremizing this action with respect to
the metric tensor 𝑔`a yields,

𝐺𝛼𝛽 ≡ 𝑅𝛼𝛽 (𝑔) −
1
2
𝑔𝛼𝛽𝑅(𝑔) = 𝑇𝛼𝛽 , (2.9.14)

as we have seen above. Naturally, one needs to include the coupled matter equations of motion arising from
the extremization of the action w.r.t. the matter fields 𝜙𝑖 to obtain the full set of equations that govern the
dynamics of this system. In general, this set of Einstein plus matter equations of motion do not form a closed
set of partial differential equations and one is required to introduce a constitutive relation determining the
energy-momentum tensor 𝑇`a from the metric and the matter fields 𝑔 and 𝜙𝑖 . These equations and relations
can be constructed from the appropriate classical field theory describing the matter model of interest, scalar
or electromagnetic fields or hydrodynamic fluids etc. (see for example [9, 106]). The initial data then for the
associated Cauchy problem will is given by 𝑑 = 𝑑g ∪ 𝑑m, where 𝑑m denotes the initial data for the matter
sector.

2.10 Conclusions30

In this chapter we have reviewed some basic material pertaining to stability of spacetimes, and have discussed
in detail the findings of our works [71, 104]. We end this chapter with a quick summary.

Reviewing [71], we have shown that there if one imposes a specific condition (2.5.28) as the inner boundary
condition for the quasi-normal modes of a near-extremal superspinar, it mode stable. However, as discussed
above, since equation 2.5.19 does not possess a singular point on the real axis of 𝑟 in the superspinar case, a
natural choice for inner boundary conditions does not exist, such that when imposed, they uniquely determine
𝐶 and 𝐷, as was the situation when computing the QNF spectrum for Kerr black holes (purely ingoing waves
at the horizon). Essentially, there is no physical requirement that determines �̃� for superspinars. We must, in
this situation, rephrase the question of mode stability from usual one, i.e., “Which sign does �̃�I have?", to

Does there exist a class of interior boundary conditions under which near-extremal Kerr super-
spinars are mode stable?

30Reprinted excerpt with permission from [K.-I. Nakao, P. S. Joshi, J.-Q. Guo, P. Kocherlakota, H. Tagoshi, T. Harada, M. Patil, and
A. Królak, Phys. Lett. B 780, 410 (2018)]. Copyright (2018) by Elsevier; Reprinted excerpt with permission from [P. Kocherlakota and
P. S. Joshi, Arab. J. Math. (2019)]. Copyright (2019) by Springer.

https://www.sciencedirect.com/science/article/pii/S0370269318302028?via%3Dihub
https://link.springer.com/article/10.1007%2Fs40065-019-0266-4
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If such boundary conditions exist, then one could find such stable superspinars to understand their physical
nature, leading to new insights.

Since we must check whether a near-extremal Kerr superspinar is stable against arbitrary boundary conditions
at the inner edge of the spacetime, we now substitute equatoneions 2.5.23 and 2.5.24 into the outer boundary
condition equation for QNMs (2.5.27). This yields,

𝐷𝜎𝑠 [F (−𝑠, 𝛿,−𝜏/𝜎,−�̃�) + F (−𝑠,−𝛿,−𝜏/𝜎,−�̃�)] = −𝐶𝜎 4i𝜏
𝜎 [F (𝑠, 𝛿, 𝜏/𝜎, �̃�) + F (𝑠,−𝛿, 𝜏/𝜎, �̃�)] ,

(2.10.1)
where we have introduced F as,

F (𝑠, 𝛿, 𝜏/𝜎, �̃�) = (−2i�̃�)−i𝛿 Γ(2i𝛿)Γ(1 + 2i𝛿)Γ(1 + 4i𝜏/𝜎 − 𝑠)
Γ(1/2 − 2i�̃� + i𝛿 − 𝑠)Γ(1/2 + 2i�̃� + i𝛿 − 𝑠)Γ(1/2 − 2i�̃� + i𝛿 + 4i𝜏/𝜎) .

(2.10.2)

The answer to this new question is then “Yes,” since we may regard �̃� as an input parameter and equation
2.10.1 simply determines the ratio between the integration constants 𝐶 and 𝐷.

Now, suppose we assume �̃� = 𝑚/2+ i�̃�I with �̃�I = 𝒪( |𝜖 |𝑝) < 0. Since �̃�I may be left to arbitrary as long as it
is negative and is of size𝒪( |𝜖 |𝑝), we obtain essentially an infinite number of boundary conditions under which
near-extremal Kerr superspinars are stable. Once the ratio between 𝐶 and 𝐷 is determined through 2.10.1, we
also obtain the ratio between 𝐴 and 𝐵 since the matching condition (2.5.25) must be satisfied. As a result, we
have a damping solution for quasi-normal modes and can find the boundary condition at, for example, 𝑦 = 0
from such a solution.

It is useful to remember that the present analysis is restricted to the modes of 𝑚 = 𝑙 for the near-extremal case.
However, situations for the fundamental and overtone modes of general 𝑙 and 𝑚 are qualitatively similar to the
case when 𝑚 = 𝑙. Since the radial Teukolsky equation (2.5.8) for superspinars has no singular point on the real
axis, solutions with any frequencies can be regular in the domain 𝑟 > 𝑟0 (with 𝑟0 an arbitrary constant) under
the usual outer boundary condition for quasi-normal modes. That is, we do not have to explicitly solve the
Teukolsky equation as an eigenvalue problem even to ensure the regularity of the solution. After solving the
Teukolsky equation under the no-incoming wave condition at infinity, we will find inner boundary conditions
at 𝑟 = 𝑟0; the set of such inner boundary conditions for all complex frequencies is denoted by UBC. This fact
implies that we may assume any spectrum of the QNM for each 𝑙 and 𝑚, which is a discrete set of complex
numbers with negative imaginary parts (e.g., the QNM spectrum of the Kerr black hole). This assumption is
equivalent to that on boundary conditions at 𝑟 = 𝑟0, which are elements of UBC if and only if the frequencies
are equal to those of assumed QNM spectrum. It is however a very non-trivial issue how to find out the physical
information about the superspinar from the obtained boundary conditions at 𝑟 = 𝑟0, and hence it should be a
future work. Although this is the “inverse problem" to the linear stability analysis, it is worthwhile to notice
that the spectrum of the QNM frequencies cannot completely determine the physical nature of the superspinar
since it does not uniquely fix the inner boundary condition.

Finally, it is to be noted that our findings are consistent with the numerical results reported in [70]. There,
the Teukolsky equation was solved under two kinds of interior boundary conditions (i.e. at 𝑟 = 𝑟0): those
corresponding to perfect reflection and perfect absorption. Figure 3 therewith shows that the imaginary part
of the QNM frequency is negative for sufficiently large or small 𝑟0 under the reflection boundary condition,
or equivalently, that near-extremal superspinars are stable in these situations. Further, when 𝑟0 = 2𝑀 , the
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superspinar is stable against the perturbations with 𝑙 = 2, 𝑚 = 0, 1, 2. It appears that a mode with a larger
𝑚-value requires a larger 𝑟0-value for it to correspond to a dying perturbation. This tendency seems to be
reasonable from the point of view of the ergoregion instability [249, 250]: if there is an ergoregion around
an axisymmetric stationary object, it is unstable against large 𝑚 modes. If we regard 𝑟0 as the surface of the
superspinar, then naturally there is no ergoregion around the superspinar when 𝑟0 > 2𝑀 . Therefore, it seems
to be reasonable to conjecture that sufficiently large superspinars do not suffer from an ergoregion instability.

However, it should be noted that 𝑟0 does not have to be a surface of the superspinar. A smooth extension
of the solution to the domain, 𝑟 < 𝑟0 could be possible, due to the absence of a singular point in the radial
Teukolsky equation. Therefore, the reflection boundary condition at 𝑟 = 𝑟0 > 2𝑀 is equivalent to some other
regular boundary condition imposed at, for example, 𝑟 = 𝑀 . Hence, figure 3 of [70] is also consistent with our
statement that there exist infinitely many boundary conditions under which a near-extremal Kerr superspinar
is mode stable.

***

Following [125], we have also discussed the stability analyses of equilibria of dynamical systems, in both
classical mechanics and general relativity, in the framework of symplectic geometry, and have attempted to
set up a neat analogy to enable a simple pedagogical discussion of the notions of the stability of a spacetime.
We reviewed the Hamiltonian formulation of GR to remember how the governing equations of motion of a
Hamiltonian dynamical system are simply the flow equations of the associated symplectic Hamiltonian vector
field, defined on phase space. However, since here we have not accounted for gauge degeneracies in the ADM
phase space, and the construction of the reduced phase space by forming the quotient space of the constrained
phase space with the gauge orbits is not addressed, our results presented here are incomplete. The eventual
goal will be to draw a formal analogy between the notions of stability in classical mechanics to those in general
relativity, using its reduced phase space; the non-linear stability analysis of its critical points would simply
have to do with the divergence of its flow on reduced phase space. Further, the linear stability of a critical point
is concerned with the divergence of the flow of the linearization of the Hamiltonian vector field, otherwise
called the tangent flow, at the critical point.

Also, as was pointed out here, only the set of globally hyperbolic spacetimes can be studied within the
Hamiltonian formulation of GR [251], and for such spacetimes one can apply methods of symplectic geometry.
Further, there is an isomorphism from the space of all globally hyperbolic solutions of the vacuum Einstein
field equations to the space of allowed initial data. This is clear heuristically if one thinks of the solutions or
4-dimensional metrics 𝑔 as being given equivalently by a one-parameter family of 3-dimensional Riemannian
metrics 𝑞(𝑡) that satisfy the flow equations of the ADM+matter symplectic Hamiltonian vector field (along
with the lapse function and the shift vector, of course). Then, if one quotients out the gauge orbits, roughly
a collection of all allowed 𝑞(𝑡) would correspond to the space of solutions of the Einstein field equations.
Since within the class of globally hyperbolic spacetimes, a particular evolution from a particular initial data
set depends continuously on it, and trajectories in phase space don’t intersect, it is possible to characterize a
solution uniquely by its initial data 𝑞(0). Typically, both these spaces (of solutions 𝑞(𝑡) and of initial data
𝑞(0)) are equivalent characterisations of the phase space of a physical theory and this is a feature of most
typical (deterministic) physical theories like classical mechanics, quantum mechanics etc. Therefore, studying
the stability of a given spacetime 𝑔 (orbital stability) is equivalent to studying the stability (divergence) of the
Hamiltonian flow near the initial data 𝑞(0) that it evolves from. Further, if one shows that a particular critical
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point 𝑞★, corresponding to a stationary solution 𝑞(𝑡) = 𝑞★, is an attractor with a basin of attraction in phase
space, then 𝑞★ corresponds to the metric of a linearly stable stationary spacetime. Additionally, the extent of
its basin of attraction determines how non-linearly stable it is.

Since this is a nascent study, we have not analysed the potential benefits, from a numerical standpoint, of
conducting a stability analysis using symplectic geometry here. One can numerically find the critical points
of a Hamiltonian system by flowing along and minimising the (normal) gradient of its Hamiltonian function.
Once such critical points are identified, one could study the properties of the local flow equations of the
symplectic gradient of the Hamiltonian function numerically to gain insight into the nature of the stability of
these critical points. Already in other contexts, for example, in applications of the theory of chaotic kinematics
to oceanographic and atmospheric sciences, condensed matter, particle, accelerator and plasma physics, and
also in string theory, symplectic geometry has proven to be a useful tool [252–257].

It is worth emphasising here that in general relativity, given an exact solution, obtaining the initial data set
that it evolves from is generally a task of great difficulty and the branch of gravitational collapse, for example,
is concerned with these issues. One of the few well characterized solutions 𝑞(𝑡) is the collapse process to
a Schwarzschild black hole, which allowed us to demonstrate a non-linear stability analysis in the context of
GR in §2.8.3. As mentioned before, some (non-globally hyperbolic) solutions of the Einstein field equations
cannot even be found to depend continuously on initial data. Taking advantage of the fact that the evolution
of a spherically symmetric, regular cloud of pressureless matter to a Schwarzschild black hole is known to be
given by the Datt-Oppenheimer-Snyder collapse ([44]), it’s initial data is well characterised, and the evolutions
of nearby initial data are also well understood (determined by the Lemaître-Tolman-Bondi collapse models),
we discussed the visibility of the eventual spacetime singularity that forms in these collapse evolutions. In
specific, the DOS collapse to a Schwarzschild black hole evolves from homogeneous initial data (𝜌(0, 𝑟) = 𝜌0)
and we considered a 2-parameter open subset of initial data 𝜌(0, 𝑟) = 𝜌0− 𝜌2𝑟

2 (𝜌2 ≥ 0) around it. We showed
that the initial compactness 𝜒 = 𝑀/𝑟𝑏 of collapsing cloud (where 𝑀 is the total ADM mass of the cloud and
𝑟𝑏 is its initial radius) governed the nature of the singularity in these models, i.e. when 𝜒 ≲ .44, the cloud
formed a globally visible naked singularity and a black hole otherwise.
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Shadows and Images of Spherically
Symmetric Black Holes and Naked
Singularities1

3.1 Introduction

The study of shadows and images of compact objects has been a subject of great interest. The optical
appearance of a star collapsing through its gravitational radius was first studied in [258], and of a star orbiting
an extreme Kerr black hole in [259]. Many authors have studied the characteristics of shadows cast by various
black holes [260–268]. Structures of shadows and images of black holes have been discussed in the context
of determining their spins and masses, and in testing general relativity [43, 269, 270]. Implications of black
hole shadows on the distribution of dark matter have been explored in [271]. The time-dependence of the
angular radius of the shadow in the course of formation of a black hole from gravitational collapse has also
been calculated in [272].

One of the early explorations of images and shadows cast by naked singularities was given in [273]. They
studied how the central naked singularity that formed during the collapse of a self-similar dust cloud, was
observed by distant observers. By investigating radial and non-radial null geodesics emanating from the
singularity, they were able to show that the angular diameter of the image is time dependent; it grows
monotonically and approaches the value 3

√
3𝑀/𝑅𝑜 for an observer at 𝑅 = 𝑅𝑜 ≫ 𝑀 . The asymptotic value

of the angular diameter comes from the geometry of the exterior Schwarzschild region. Later, in [274] the
radiation emitted by collapsing spherically symmetric dust clouds evolving from different initial data, leading
to both black holes and naked singularities as end states, was studied. They found that within their simplified
model, both these objects had very similar observational features and that it was difficult to differentiate
between them based on their light curves. That the redshift of photons travelling from past to future null
infinity through a ball of collapsing dust could provide an observational signature capable of differentiating
between the formation of a globally naked singularity from the formation of an event horizon was pointed out

1Reprinted excerpt with permission from [R. Shaikh, P. Kocherlakota, R. Narayan, and P. S. Joshi, Mon. Not. R. Astron. Soc. 482,
52 (2018).]. Copyright (2018) by the Oxford University Press.
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in [275]. In a folllow up [276], it was shown that although at late times the image of the source perceived by
the observer looks the same in both cases, the dynamical formation of the shadow and the redshift images have
distinct features and time scales. Effects of gravitational lensing around naked singularities have also been
investigated [277, 278]. Shadows cast by the overspinning Kerr geometry with its central singularity excised
(akin to the superspinars above §2.5) were considered in [279].

The shadows and images cast by a compact object with a thermally emitting surface were studied in [280] and
compared against those of a black hole. They showed that, in some cases, the images could be nearly identical.
The geometry outside compact objects modeled using a static spherical polytropic perfect fluid was examined
in [281] and it was found that they admit no photon spheres and therefore cast no shadows, allowing them to
be distinguishable from black holes. The subject of whether there are supercompact objects, that are not black
holes, which possess unstable circular orbits of photons, and how one can distinguish them from black holes
based on their shadows was explored in [282]. Considering the spherical thin-shell model of a gravastar, it
was found in [283] that unstable circular orbits of photons can appear around the gravastar, and that one could
tell the difference between a black hole and a gravastar with high-resolution very-long-baseline-interferometry
observations in the near future. Shadows cast by horizonless exotic compact objects such as wormholes have
also been a subject of great interest [284–287].

Recently, physically reasonable spherically-symmetric gravitational collapse scenarios that end up as naked
singularities were investigated in [51, 113], and various properties of these spacetimes were computed, such
as the nature of stable circular orbits and the spectra of accretion discs. It was noted there that spectra, in
particular, may be helpful to discriminate between black holes and naked singularities. The purpose of the
present chapter, reported in [121], is to examine shadows and images of these naked singularity models, and
to compare them with the images we expect from black holes. The goal is to check whether the images
corresponding to the two kinds of model are clearly distinguishable. Our interesting conclusion is that, while
black holes always cast a shadow, naked singularities may or may not, depending on the specific structure of
the singularity. Therefore, while black holes imply shadows, the converse is not true. A shadow could be
produced by certain naked singularities as well.

The plan of the current chapter is as follows. In §3.2, we briefly review the collapse models we use here,
and outline some of their properties. In §3.3, we investigate geodesic motion, unstable photon orbits and the
resulting shadows. In §3.4, we study gravitational lensing and relativistic images in the various spacetimes.
In §3.5, we consider a simple accretion model and compute images, which we use to examine how black holes
and naked singularities could be distinguished. We then repeat the analysis in §3.6 using a more realistic
accretion flow model and show that the results are largely unchanged. We conclude in §3.7 with a summary
of the key results.

3.2 The Black Hole and Naked Singularity Spacetimes

We compare images and shadows produced by a Schwarzschild black hole [1] with those produced by two
different naked singularity spacetimes [51, 113]. The latter two solutions describe the geometry around
compact objects formed from the spherically-symmetric gravitational collapse of two different types of fluids.
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The first naked singularity solution, which we call JMN-1, is formed from the collapse of matter with zero
radial pressure, and is described by the following metric [51],

d𝑠2
1 = −(1 − 𝑀0)

(
𝑟

𝑅b

)𝑀0/(1−𝑀0)
d𝑡2 + d𝑟2

1 − 𝑀0
+ 𝑟2

(
d\2 + sin2 \d𝜙2

)
, (3.2.1)

where the parameter 𝑀0 is limited to the range 0 ≤ 𝑀0 ≤ 4/5 (the upper limit corresponds to the requirement
that the sound speed should not exceed unity). The matter content of this spacetime has the following energy
density 𝜌, radial pressure 𝑝𝑟 , and tangential pressure 𝑝\ :

𝜌 =
𝑀0

𝑟2 , 𝑝𝑟 = 0, 𝑝\ =
𝑀0

4(1 − 𝑀0)
𝜌 =

𝑀2
0

4(1 − 𝑀0)
1
𝑟2 . (3.2.2)

This fluid has non-zero tangential pressure, but its radial pressure is assumed to vanish.

The second naked singularity solution, which we call JMN-2, is the end state of collapse of a spherical
cloud with non-zero radial pressure. It describes, for example, the collapse of a perfect fluid cloud with a
locally varying equation of state 𝑘 (𝑟) = 𝑝/𝜌 (not strictly isothermal) that approaches a constant value in the
neighborhood of the center of the cloud. This spacetime is described by the metric [113],

d𝑠2
2 = − 1

16_2 (2 − _2)

[
(1 + _)2

(
𝑟

𝑅b

)1−_
− (1 − _)2

(
𝑟

𝑅b

)1+_
]2

d𝑡2 + (2 − _2)d𝑟2 + 𝑟2
(
d\2 + sin2 \d𝜙2

)
,

(3.2.3)
where 0 ≤ _ < 1. The expressions for the energy density and pressure can be found in [113]. For easier
comparison with the JMN-1 model, we define a parameter 𝑀0,

𝑀0 =
1 − _2

2 − _2 , (3.2.4)

which represents an alternative way (instead of _) of parametrizing JMN-2.

Both JMN-1 and JMN-2 contain a time-like naked singularity at 𝑟 = 0 and no trapped surface forms in these
spacetime. Both solutions are matched at their boundary radius 𝑟 = 𝑅b to the Schwarzschild geometry,

d𝑠2
0 = −

(
1 − 2𝑀

𝑟

)
d𝑡2 + d𝑟2

1 − 2𝑀
𝑟

+ 𝑟2
(
d\2 + sin2 \d𝜙2

)
. (3.2.5)

In both cases, the total mass 𝑀 is given by

𝑀 =
1
2
𝑀0𝑅b. (3.2.6)

The three static spherically symmetric spacetimes we consider here can be written in the general form,

d𝑠2
𝑖 = − 𝑓𝑖 (𝑟)d𝑡2 +

d2

𝑔𝑖 (𝑟)
+ 𝑟2

(
d\2 + sin2 \d𝜙2

)
, (3.2.7)
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with the index 𝑖 = 0, 1, 2 corresponding to the Schwarzschild black hole, the JMN-1 and the JMN-2 naked
singularity metric functions respectively, which are given as,

𝑓0 (𝑟) = 𝑔0 (𝑟) =
(
1 − 2𝑀

𝑟

)
, (3.2.8)

𝑓1 (𝑟) = (1 − 𝑀0)
(
𝑟

𝑅b

)𝑀0/(1−𝑀0)
, 𝑔1 (𝑟) = (1 − 𝑀0),

𝑓2 (𝑟) =
1

16_2 (2 − _2)

[
(1 + _)2

(
𝑟

𝑅b

)1−_
− (1 − _)2

(
𝑟

𝑅b

)1+_
]2

, 𝑔2 (𝑟) =
1

2 − _2 .

We now briefly discuss a few technical issues that are relevant for our study of images and shadows. First,
we address the issues of whether the JMN spacetimes satisfy the Tolman-Oppenheimer-Volkoff equation
(TOV, [288, 289]), which is derived by solving the Einstein field equations together with the conservation
equations for a general time-independent, spherically symmetric metric (canonically for perfect fluids). Since
the gravitational collapse process that leads to the the above JMN spacetimes is studied by solving the Einstein
field equations together with the conservation equations (see [51, 113]), when a time-invariant configuration
(equilibrium) is attained, the TOV equation must automatically be satisfied. For the JMN-2 class of spacetimes,
the TOV equation at equilibrium is discussed and shown to be satisfied (see equation 27 of [113]). Here, we
point out that the JMN-1 spacetime, containing an imperfect fluid, also obeys the anisotropic TOV equation.
For a spacetime with metric given by 3.2.7 and supported by the energy-momentum tensor of the form
𝑇
`
a = diag[−𝜌, 𝑝𝑟 , 𝑝\ , 𝑝\ ], the anisotropic TOV equation is given by (see equation 21 of [290]),

𝑝′𝑟 = −(𝜌 + 𝑝𝑟 )
𝑚(𝑟) + 𝑟3𝑝𝑟/2
𝑟 (𝑟 − 2𝑚(𝑟)) + 2

𝑟
(𝑝\ − 𝑝𝑟 ), (3.2.9)

where we have set 8𝜋𝐺 = 1 and 𝑐 = 1, and

𝑔𝑖 (𝑟) = 1 − 2𝑚(𝑟)
𝑟

, 2𝑚(𝑟) =
∫ 𝑟

0
d𝑟 𝜌𝑟2. (3.2.10)

For the JMN-1 spacetime, the energy density and pressures are given in equation 3.2.2 and 𝑚(𝑟) = 1
2𝑀0𝑟. It

can immediately be checked that the TOV equation is satisfied by this spacetime.

The JMN-1 spacetime may not be physically realistic since the radial pressure is assumed to vanish (but this
assumption simplifies the analysis considerably and allows simple analytical expressions). JMN-2 is more
realistic since it is supported by a fluid with isotropic pressure. The matter for the JMN-2 can have an equation
of state of the form 𝑝 = 𝑘𝜌, where 𝑘 may not necessarily be a constant. Since the pressure must vanish
at the surface 𝑟 = 𝑅b whereas the density may not, we must have 𝑘 |𝑟=𝑅b = 0. Other examples of stable
configurations, where the matter has a constant density and isotropic pressure with a variable equation of state,
exist in the literature (see §6.2 of [10] or equation 1 of [291]).

Next, we show that the JMN spacetimes can be smoothly matched across the 𝑟 = 𝑅b hypersurface Σ, i.e., the
metric tensor 𝑔`a and the extrinsic curvature 𝐾𝑎𝑏 are continuous across Σ. By construction 𝑔`a is continuous
across Σ (see equation 3.2.8). To show that 𝐾𝑎𝑏 is also continuous, we first note that the coordinates in both
the interior and the exterior are 𝑥` = (𝑡, 𝑟, \, 𝜙), and those on Σ are 𝑦𝑎 = (𝑡, \, 𝜙). Therefore, as seen from the
Schwarzschild exterior, the induced metric on Σ is

d𝑠2
Σ = −(1 − 𝑀0)d𝑡2 + 𝑅2

b (d\
2 + sin2 \d𝜙2), (3.2.11)
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where we have used equation 3.2.6. Also, as seen from the interior JMN spacetimes, the induced metric on
Σ is the same as in equation 3.2.11. This is reminiscent of the fact that the metric tensor 𝑔`a is continuous
across Σ. The non-zero components of the tangent 𝑒`𝑎 = 𝜕𝑥`/𝜕𝑦𝑎 on Σ are 𝑒𝑡𝑡 = 1, 𝑒\

\
= 1 and 𝑒𝜙

𝜙
= 1.

The extrinsic curvature of Σ is given by 𝐾𝑎𝑏 = 𝑒
`
𝑎𝑒

a
𝑏
∇a𝑛`, where 𝑛` is a unit normal to Σ. Now, as seen

either from the exterior Schwarzschild or from the interior JMN spacetimes (3.2.7), the unit normal is given
by 𝑛` = (0,

√︁
𝑔𝑖 (𝑟), 0, 0). Therefore, as seen either from the exterior Schwarzschild or from the interior JMN

spacetimes, the non-zero components of the extrinsic curvature are given by

𝐾 𝑡
𝑡 =

𝑓 ′
𝑖
(𝑟)

2 𝑓𝑖 (𝑟)
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𝜙
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1
𝑟

√︁
𝑔𝑖 (𝑟)

���
𝑟=𝑅b

. (3.2.12)

Note that 𝑓1,2 (𝑅b) = 𝑓0 (𝑅b) = (1−𝑀0) and 𝑔1,2 (𝑅b) = 𝑔0 (𝑅b) = (1−𝑀0). Also, it is straighforward to show
that 𝑓 ′1,2 (𝑅b) = 𝑓 ′0 (𝑅b) = 𝑀0/𝑅b, implying that the extrinsic curvature is also continuous across Σ. Therefore,
the JMN spacetimes are smoothly matched to the exterior Schwarzschild spacetime at 𝑟 = 𝑅b.

The JMN spacetimes do not contain any trapping region since (1− 2𝑚(𝑟)/𝑟) = 1−𝑀0 > 0 always. However,
to show that the singularities are actually naked, we have to show that photons emitted from the singularity,
or from its vicinity, reach faraway observers in a finite time. To this end, we calculate both the affine time
and the time measured by a faraway static observer. Taking 𝐸 = 1 (see §3.3), as measured by a faraway static
observer, the time taken by a radially outgoing photon (𝐿 = 0) to travel from 𝑟 to the surface is given by

Δ𝑡 = 𝑡 (𝑅b) − 𝑡 (𝑟) =
∫ 𝑅b

𝑟

d𝑟
¤𝑡
¤𝑟 =

∫ 𝑅b

𝑟

d𝑟√︁
𝑓𝑖 (𝑟)𝑔𝑖 (𝑟)

. (3.2.13)

For JMN-1, this gives

Δ𝑡 = 𝑡 (𝑅b) − 𝑡 (𝑟) =
2𝑅b

2 − 3𝑀0

1 −
(
𝑟

𝑅b

) 2−3𝑀0
2(1−𝑀0 )

 . (3.2.14)

Note that, for 𝑀0 < 2/3, Δ𝑡 is finite for a photon escaping from the singularity 𝑟 = 0 to reach the surface 𝑅b.
However, for 𝑀0 > 2/3, Δ𝑡 diverges as 𝑟 → 0, implying that, as measured by a faraway static observer, a
photon escaping from the singularity takes infinite time to reach the observer. For JMN-2, we have

Δ𝑡 =
2(2 − _2)𝑅b

1 − _2

[
log

2(1 + _)
_

− log
(1 + _)𝑅b + (1 − _)𝑟
(1 + _)𝑅b − (1 − _)𝑟

]
. (3.2.15)

We see that Δ𝑡 is finite as 𝑟 → 0, implying that a photon escaping from the singularity always takes finite
time to reach a faraway observer. We next calculate the affine time 𝜏. From equation 3.3.5, for radial null
geodesics, we obtain

Δ𝜏 = 𝜏(𝑅b) − 𝜏(𝑟) =
∫ 𝑅b

𝑟

d𝑟

√︄
𝑓𝑖 (𝑟)
𝑔𝑖 (𝑟)

. (3.2.16)

For JMN-1 spacetime, this becomes

Δ𝜏 =
2𝑅b (1 − 𝑀0)

2 − 𝑀0

1 −
(
𝑟

𝑅b

) 2−𝑀0
2(1−𝑀0 )

 , (3.2.17)
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which is finite always as 𝑟 → 0, implying that a photon escaping from the JMN-1 singularity always reaches
a faraway observer in a finite affine time. For JMN-2, we have

Δ𝜏 =
𝑅b (1 + _)2

4_(2 − _)

[
1 −

(
𝑟

𝑅b

)2−_
]
− 𝑅b (1 − _)2

4_(2 + _)

[
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(
𝑟

𝑅b

)2+_
]
, (3.2.18)

which is again finite as 𝑟 → 0, implying that a photon escaping from the JMN-2 singularity always reaches a
faraway observer in a finite affine time.

Thus, except for the JMN-1 spacetime with 𝑀0 > 2/3, both the coordinate time 𝑡 and the affine time 𝜏 are
finite for a photon escaping from the singularities and reaching a faraway observer. In the case of JMN-1
spacetime with 𝑀0 > 2/3 however, even though the coordinate time 𝑡 is infinite, the affine time 𝜏 is finite for
photons emitted from an infinitesimally close vicinity of the singularity (𝑟 ≃ 0). In this case, the behaviour of
null geodesics escaping from the singularity is very similar to that of null geodesics escaping from the event
horizon of a Schwarzschild black hole. However, photons emitted from a finitely close vicinity (𝑟 ∼ 0) of the
singularity will take large but finite coordinate times 𝑡 to reach a faraway observer.

Finally, it is worth emphasizing that the spacetimes we study here are merely toy models that we use to
explore potential observational signatures of naked singularities. At this stage of our study, we do not view
astrophysical realism as an important requirement. The main virtue of these models is that, they are not merely
exact solutions of the steady state (time-independent) Einstein field equations (of which there are many),
but we have shown that these solutions develop via time evolution of regular spherically-symmetric initial
data [51, 113]. The latter is a rather stringent requirement. As is well-known, the Schwarzschild black hole
metric forms via evolution from non-singular initial conditions, e.g., the famous Datt-Oppenheimer-Snyder
model. However, none of the other black hole solutions (Reissner-Nordstrom, Kerr) has been shown to form
in their entirety, i.e., both outside and inside the horizon, from regular initial conditions. Similarly, we do not
believe that many of the naked singularity models in the literature, e.g., Kerr with 𝑎 > 𝑀 , Reissner-Nördstrom
with 𝑄 > 𝑀 and the Janis-Newman-Winicour naked singularity have been shown to form from physically
well-behaved initial conditions. In contrast, our naked singularity solutions do form from perfectly regular
initial conditions, as we have demonstrated in our previous work. We view this as a major advantage of these
models, and in this sense we consider our models to be “physically realistic".

3.3 Shadows of JMN Naked Singularities and Schwarzschild Black
Hole

The shadow structures for the different spacetimes are determined by the properties of null geodesics in these
spacetimes. We therefore begin with a discussion on this topic. We consider an extended source of radiation
on the far side of the compact object. Photons from the source traverse the spacetime of the black hole or
naked singularity, get deflected, and reach the observer. As viewed by the observer, we are interested in those
directions for which no (or very little) radiation is received. The union of these directions constitutes the
shadow of the gravitating object.
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3.3.1 Geodesic Motion and Unstable Photon Orbits

The Lagrangian describing the motion of a photon in the spacetime geometry (3.2.7) is given by

2L = − 𝑓𝑖 (𝑟) ¤𝑡2 +
¤𝑟2

𝑔𝑖 (𝑟)
+ 𝑟2 ¤\2 + 𝑟2 sin2 \ ¤𝜙2, (3.3.1)

where a dot represents a derivative with respect to the affine parameter. Since the Lagrangian is independent
of 𝑡 and 𝜙, we have two constants of motion:

𝑝𝑡 =
𝜕L
𝜕 ¤𝑡 = − 𝑓𝑖 (𝑟) ¤𝑡 = −𝐸, (3.3.2)

𝑝𝜙 =
𝜕L
𝜕 ¤𝜙

= 𝑟2 sin2 \ ¤𝜙 = 𝐿, (3.3.3)

where 𝐸 and 𝐿 are, respectively, the energy and angular momentum of the photon. Using the null geodesic
condition 𝑔`a ¤𝑥` ¤𝑥a = 0, we obtain

1
𝑔𝑖

¤𝑟2 + 𝑟2 ¤\2 =
𝑟2 sin2 \𝐸2 − 𝑓𝑖𝐿

2

𝑓𝑖𝑟
2 sin2 \

. (3.3.4)

Since our spacetimes are spherically symmetric, the shadows and images will be circularly symmetric in the
observer sky. Thus the intensity will be a function only of the impact parameter 𝑏 = 𝐿/𝐸 with respect to the
center of the spacetime, and will be independent of the azimuthal angle \. Therefore, we can simply choose
\ = 𝜋/2, ¤\ = 0, and obtain all our results for this case. The same results can then be applied to all \. Setting
\ = 𝜋/2 and ¤\ = 0, we obtain

𝑓𝑖

𝑔𝑖
¤𝑟2 +𝑉eff = 0, 𝑉eff = 𝐿2 𝑓𝑖 (𝑟)

𝑟2 − 𝐸2. (3.3.5)

The impact parameter 𝑏 can be related to the turning point 𝑟tp of a photon, where ¤𝑟 = 0 and 𝑉eff (𝑟tp) = 0:

𝑏 =
𝑟tp√︁
𝑓𝑖 (𝑟tp)

. (3.3.6)

This expression will be useful in our subsequent analysis. Circular photon orbits satisfy 𝑉eff = 0 and
d𝑉eff/d𝑟 = 0, and we have,

𝑥 𝑓𝑖,𝑥 − 2 𝑓𝑖 = 0, (3.3.7)

𝑏2

𝑅2
b
=
𝑥2

𝑓𝑖
, (3.3.8)

where 𝑥 = 𝑟/𝑅b, and 𝑓𝑖,𝑥 represents differentiation of 𝑓𝑖 with respect to 𝑥. Note that the matching surface
between the interior naked singularity spacetime and the exterior Schwarzschild spaceime is now at 𝑥 = 𝑥𝑏 = 1.
The photon sphere comprises of circular unstable photon orbits, i.e., circular orbits that satisfy additionally
𝑑2𝑉eff/𝑑𝑟2 < 0.

Equation (3.3.7) does not have any non-trivial solution for the two interior JMN spacetimes we are considering.
Therefore, there is no photon sphere for either interior JMN spacetime. However, the JMN spacetimes are
matched on the exterior to the Schwarzschild geometry, and the latter spacetime does have unstable photon
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orbits on a photon sphere located at

𝑟ph = 3𝑀, 𝑥ph ≡
𝑟ph

𝑅b
=

3
2
𝑀0. (3.3.9)

Therefore, the existence or not of a photon sphere in the naked singularity models depends on the relative sizes
of 𝑥ph and the matching radius 𝑥𝑏. A photon sphere exists whenever the following conditions, which are all
equivalent, are satisfied

𝑅b ≤ 3𝑀, 𝑥ph ≥ 𝑥𝑏, 𝑀0 ≥ 2
3
. (3.3.10)

There is no photon sphere when 𝑀0 < 2/3, or equivalently, when 𝑅b > 3𝑀 .

The JMN-1 spacetime satisfies reasonable physical conditions (e.g., sound speed less than unity) for the
parameter range 0 < 𝑀0 < 4/5. The subset of these models with 2/3 ≤ 𝑀0 < 4/5 have photon spheres,
while the rest do not. The JMN-2 spacetime is parametrised by 0 ≤ _ =

√︁
(1 − 2𝑀0)/(1 − 𝑀0) ≤ 1, which

means that the allowed range of 𝑀0 is 0 ≤ 𝑀0 ≤ 1/2. Thus, JMN-2 is devoid of a photon sphere for the entire
allowed range of parameter values. It should be noted that for the cases for which photon spheres exist, they
are always located in the exterior Schwarzschild geometry. Setting 𝑥 = 𝑥ph = 3𝑀0/2 in equation 3.3.8, we
obtain

𝑏2
ph =

27
4
𝑀2

0𝑅
2
b = 27𝑀2, (3.3.11)

which is the same equation as that obtained for the Schwarzschild black hole. The only difference in the case
of the JMN spacetimes is that we have the additional requirement, 𝑀0 ≥ 2/3 (or 𝑅b ≤ 3𝑀), in order to have a
photon sphere. In the above discussion, 𝑏𝑝ℎ is the critical impact parameter of a photon on an unstable photon
orbit.

3.3.2 Shadows

The unstable photon orbits constitute the photon sphere, and they define the boundary of the shadow cast
by a compact object. Photons from a distant source with impact parameter 𝑏 larger than the critical impact
parameter 𝑏ph, i.e.,

𝑏2 > 27𝑀2, (3.3.12)

remain outside the photon sphere and reach the observer. However, photons with impact parameters smaller
than the critical impact parameter are captured within the photon sphere and do not reach the observer, thereby
creating dark spots in the observer’s sky. The union of these dark spots constitutes the shadow. Therefore, the
apparent shape of the shadow projected in the observer’s sky is a circular disc whose radius is given by the
critical impact parameter 𝑏ph = 3

√
3𝑀 .

Figure 3.1 shows the shapes of shadows cast by the JMN-1 naked singularity and the Schwarzschild black
hole. The circles represent the outer boundaries of the shadows. In the case of the black hole, shadows exist
for all 𝑀 . However, in the case of the JMN-1 naked singularity, depending on the value of 𝑀0, a shadow
may either form (𝑀0 ≥ 2/3), or not form (𝑀0 < 2/3). As we noted earlier, in the case of the JMN-2 naked
singularity there is no photon sphere, and therefore this spacetime does not cast any shadow.
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(a) JMN-1 naked singularity (b) Schwarzschild black hole

Figure 3.1: Shadows cast by (a) the JMN-1 naked singularity, matched to the exterior Schwarzschild spacetime
at 𝑥 = 𝑥b = 1, for 𝑀0 = 0.75, 0.72, 0.69, 0.66, 0.63 (from outer to inner), in the units of 𝑅b, and (b) the
Schwarzschild black hole with mass 𝑀 equal to the same set of values (from outer to inner). For 𝑀0 < 2/3,

the JMN-1 naked singularity does not cast any shadow.

3.4 Gravitational Lensing and Relativistic Images

Since the shadows and images are the result of strong gravitational lensing, we now study lensing by the JMN
naked singularities. From §3.3, we obtain

d𝜙
d𝑟

=
1

𝑟2
√︁
𝑔𝑖 (𝑟)

1√︃
1

𝑏2 𝑓𝑖 (𝑟)
− 1

𝑟2

, (3.4.1)

where 𝑏 is the impact parameter. Defining 𝑢 = 𝑅b/𝑟 , we obtain the deflection angle

𝛼 = 2
∫ 𝑢tp

0

d𝑢
√
𝑔𝑖

1√︃
1

�̄�2 𝑓𝑖 (𝑢)
− 𝑢2

− 𝜋, (3.4.2)

where
�̄� =

𝑏

𝑅b
, 𝑢tp =

𝑅b

𝑟tp
, (3.4.3)

and 𝑟tp is the turning point given by d𝑟/d𝜙 = 0. For the spacetimes under consideration, the dimensionless
impact parameter �̄� is given by (see equation 3.3.6)

�̄� =
1

𝑢tp
√︁
𝑓𝑖 (𝑢tp)

. (3.4.4)

Note that when 𝑟tp = 𝑅b, 𝑢tp = 1. Therefore, if 𝑢tp < 1, then the photon does not enter the interior of the JMN
metric. In that case, the deflection is given by equations 3.4.2 and 3.4.4, with 𝑓𝑖 (𝑟) and 𝑔𝑖 (𝑟) given by the
exterior Schwarzschild metric. However, if the photon does enter the JMN metric and has its turning point in
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the interior (𝑟tp < 𝑅b, i.e., 𝑢tp > 1), then the deflection angle can be written as [292]

𝛼 = 2
∫ 1

0

d𝑢
√
𝑔0

1√︃
1

�̄�2 𝑓0 (𝑢)
− 𝑢2

+ 2
∫ 𝑢𝑡 𝑝

1

d𝑢
√
𝑔1,2

1√︃
1

�̄�2 𝑓1,2 (𝑢)
− 𝑢2

− 𝜋, (3.4.5)

where 𝑓1,2 refer to the JMN-1 or JMN-2 models, respectively, and the impact parameter �̄� is given by equation
3.4.4. The first term in equation 3.4.5 is the contribution from the exterior Schwarzschild geometry and the
second term is that from the interior JMN metric, 𝛼JMN1 or 𝛼JMN2.

Because of its simple form, here we focus on the JMN-1 naked singularity. As discussed in §3.3, a photon
sphere exists for 𝑀0 ≥ 2/3 and the photon sphere lies in the exterior Schwarzschild geometry. As a result, all
the photons which participate in the image formation have their turning points outside of the photon sphere.
Therefore, in this case, there is no difference in lensing behaviour between the JMN-1 naked singularity and
the Schwarzschild black hole. On the other hand, since there is no photon sphere for 𝑀0 < 2/3, photons
may enter the interior of the JMN-1 spacetime and experience a turning point because of the infinite potential
barrier at the singularity. Therefore, for this range of 𝑀0, there is a clear distinction between the lensing
behaviour of the JMN-1 naked singularity and that of the Schwarzchild black hole.

For 𝑀0 < 2/3, the contribution of the JMN-1 spacetime to the deflection angle, 𝛼JMN1, can be obtained
analytically by a change of variables to 𝑧 = 𝑢 (2−3𝑀0)/2(1−𝑀0) . We then obtain

𝛼JMN1 = 2
∫ 𝑢tp

1

d𝑢
√
𝑔1

1√︃
1

�̄�2 𝑓1 (𝑢)
− 𝑢2

=
4
√

1 − 𝑀0

2 − 3𝑀0

∫ 𝑧tp

1

d𝑧√︃
1

�̄�2 (1−𝑀0)
− 𝑧2

=
2
√

1 − 𝑀0

2 − 3𝑀0

𝜋 − 2 sin−1
(
𝑟tp

𝑅b

) 2−3𝑀0
2(1−𝑀0 )

 , (3.4.6)

where 𝑟tp ≤ 𝑅b.

The analytical expression of the contribution due to the Schwarzschild geometry in the exterior of the JMN-1
model is the same as that of a Schwarzschild black hole and can be found in [293]. Figure 3.2 shows a plot
of the deflection angle as a function of 𝑢tp. Since a photon sphere exists for 𝑀0 ≥ 2/3, the deflection angle
diverges as the turning point approaches the photon sphere. This divergence is logarithmic [294]. Therefore,
theoretically, there will be an infinite number of images just outside the photon sphere.

For the JMN-1 naked singularity model with 𝑀0 < 2/3, although there is no photon sphere, the deflection
angle can still be large because, depending on the impact parameter, light rays may wind around the singularity
several times. Due to this large bending, there can be many relativistic rings even for 𝑀0 < 2/3.

In the following, for simplicity, we assume that the observer, the lens, and the distant point light source are all
aligned. We also consider that the observer and the light source are far away from the lens. Therefore, in the
observer’s sky, the relativistic images will be concentric rings (known as relativistic Einstein rings) of radii
given by the corresponding impact parameters 𝑏(𝑟tp). These impact parameter values 𝑏(𝑟tp) can be obtained
by solving 𝛼 ≃ 2𝜋𝑛, where 𝑛 is the ring number [294].

Figure 3.3 shows the relativistic Einstein rings in the observer’s sky. In the case of the JMN-1 naked singularity
with 𝑀0 ≥ 2/3 and the Schwarzschild black hole, all the relativistic images are clumped together outside
the photon sphere, which forms the outer boundary of the shadow. The radius of the innermost image in the
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Figure 3.2: Deflection angle 𝛼 as a function of 𝑢tp of light rays for the JMN-1 naked singularity matched with
an exterior Schwarzschild geometry. The vertical dashed line shows the boundary between the two geometries.

observer’s sky is given by the minimum critical impact parameter 𝑏ph. Photons with impact parameter less
than 𝑏ph are absorbed by the photon sphere. Hence, in this case, there is a shadow and many relativistic images
clumped together just outside the edge of the shadow.

As an aside we note that, besides the relativistic Einstein rings discussed here, there is a standard Einstein ring
formed as a result of weak deflection of light (weak deflection occurs when 𝑀/𝑟tp ≪ 1). For all physically
reasonable 𝑀0 values, weak deflection and the traditional Einstein ring occur in the exterior Schwarzschild
geometry. Therefore, the traditional Einstein ring of the JMN-1 naked singularity will be the same as that due
to the Schwarzschild black hole (differences may arise when 𝑀0 is uninterestingly small).

In the case of the JMN-1 naked singularity with 𝑀0 < 2/3, there is no photon sphere and hence there is no
capture of photons. As a result, we have many distinct rings corresponding to different relativistic images.
The density of relativistic images increases as 𝑀0 approaches 2/3. This is illustrated in figure 3.3.

The discussion so far is for a single point source aligned perfectly behind the lens. However, in realistic
situations, we may have many light sources in different directions and at different distances around the lens.
The angular positions of the relativistic images formed due to each source will be different. Therefore, in the
observer’s sky, there will be numerous relativistic images, which might fill the gaps between the relativistic
images shown in figure 3.3. Hence, we may have a smooth continuous image. A similar situation occurs when
the black hole or the JMN naked singularity is surrounded by an optically thin emission region, as we discuss
in the next section.

3.5 Shadows and Images of Optically Thin Emission Regions surround-
ing Black Holes and Naked Singularities

The previous two sections dealt with distant sources of radiation, far behind the lensing compact object.
Here we consider an optically thin, radiating, accretion flow surrounding the compact object and compute the
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(a) 𝑀0 = 0.6, JMN-1 naked singularity (b) 𝑀0 = 0.63, JMN-1 naked singularity

(c) 𝑀0 = 0.65, JMN-1 naked singularity (d) 𝑀0 = 0.66, JMN-1 naked singularity

(e) 𝑀0 = 0.7, JMN-1 naked singularity (f) Schwarzschild black hole

Figure 3.3: Relativistic Einstein ring images due to gravitational lensing by (a-e) the JMN-1 naked singularity
with different values of 𝑀0, and (f) the Schwarzschild black hole. The axes are in units of 𝑀 .
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observed image. The difference is that radiation is now emitted over an extended volume near the compact
object, including regions inside the photon sphere.

The observed specific intensity 𝐼ao (usually measured in erg s−1 cm−2 str−1 Hz−1) at the observed photon
frequency ao at the point (𝑋,𝑌 ) in the observer’s sky is given by [284, 295],

𝐼ao (𝑋,𝑌 ) =
∫
𝛾

d𝑙prop 𝑔
3 𝑗 (ae), (3.5.1)

where ae is the emitted frequency, 𝑔 = ao/ae is the redshift factor, 𝑗 (ae) is the emitter’s rest-frame emissivity
per unit volume, d𝑙prop = −𝑘𝛼𝑢𝛼e d_ is the infinitesimal proper length in the rest frame of the emitter, 𝑘` is
the four-velocity of the photons, 𝑢`e is the four-velocity of the emitter, and _ is the affine parameter along
the photon path 𝛾. The subscript 𝛾 on the integral means that the integration is evaluated along an observed
photon path 𝛾. The redshift factor 𝑔 = ao/ae is given by,

𝑔 =
𝑘𝛼𝑢

𝛼
o

𝑘𝛽𝑢
𝛽
e
, (3.5.2)

where 𝑢`o = (1, 0, 0, 0) is the four-velocity of the distant observer (who is at infinity).

In the spirit of the simple spherically-symmetric spacetimes we are investigating, we consider a correspondingly
simple model for the accreting gas. We assume that the gas is in radial free fall [284], with its four-velocity
given by,

𝑢𝑡e =
1
𝑓𝑖 (𝑟)

, 𝑢𝑟e = −

√︄
𝑔𝑖 (𝑟)
𝑓𝑖 (𝑟)

[1 − 𝑓𝑖 (𝑟)], 𝑢\e = 𝑢
𝜙
e = 0. (3.5.3)

The four-velocity 𝑘` (= ¤𝑥`) of the photons was already obtained previously. In the subsequent calculations,
we will need the following expression,

𝑘𝑟

𝑘 𝑡
= ± 𝑓𝑖 (𝑟)

√︄
𝑔𝑖 (𝑟)

[
1
𝑓𝑖 (𝑟)

− 𝑏2

𝑟2

]
, (3.5.4)

where the sign +(−) is when the photon moves away from (approaches towards) the massive object. The
redshift function 𝑔 is thus given by,

𝑔 =
1

1
𝑓𝑖 (𝑟) −

𝑘𝑟
𝑘𝑡

√︃
𝑔𝑖 (𝑟)
𝑓𝑖 (𝑟) (1 − 𝑓𝑖 (𝑟))

. (3.5.5)

For the specific emissivity, we assume the following simple model [284] in which the emission is monochro-
matic with emitter’s rest-frame frequency a★, and the emission has a 1/𝑟2 radial profile:

𝑗 (ae) ∝
𝛿(a𝑒 − a★)

𝑟2 , (3.5.6)

where 𝛿 is the Dirac delta function. Finally, the proper length in the emitter frame is given by

d𝑙prop = −𝑘𝛼𝑢𝛼e d_ = − 𝑘𝑡

𝑔𝑘𝑟
d𝑟. (3.5.7)
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Integrating equation equation 3.5.1 over all the observed frequencies, we obtain the observed photon intensity
[284]

𝐼obs (𝑋,𝑌 ) ∝ −
∫
𝛾

d𝑟
𝑔3𝑘𝑡

𝑟2𝑘𝑟
. (3.5.8)

Note that the intensity map in the observer’s sky will be circularly symmetric, with the impact parameter 𝑏 of
any equi-intensity circle given by 𝑋2 + 𝑌2 = 𝑏2. Figures 3.4 and 3.5 show intensity maps of the image of the
above model accretion flow for the Schwarzschild black hole and the two JMN naked singularities.

We now note the qualitative differences in the shadows and images produced by the different models. As
expected, the Schwarzschild black hole always casts a shadow (figure 3.4 a), though we should point out that
the intensity inside the shadow does not quite go to zero as in the previous sections but has a small finite value
(figure 3.4 d). This difference is because the accretion flow emits radiation inside the photon sphere and a
small fraction of this radiation is able to escape to infinity.

In the case of the JMN-1 naked singularity, if the model has a photon sphere (𝑀0 ≥ 2/3, 𝑅b ≤ 3𝑀), then
its shadow and image (figure 3.4 b) mimic those of the Schwarzschild black hole. However, if the JMN-1
naked singularity does not have a photon sphere, then it casts a “full-moon" image (figure 3.4 c), which is
remarkably different from the images in figures 3.4 a and 3.4 b. Such a difference, if observationally detected,
could greatly help distinguish a naked singularity from a black hole.

The JMN-2 naked singularity model does not have a photon sphere for any allowed value of the parameter _.
Therefore, the image in this case is always a full-moon, as illustrated in figures 3.5 b and 3.5 c.

Our results suggest that, though a naked singularity that has a photon sphere cannot be distinguished from a
black hole through observations of the shadow or image, a naked singularity that does not have any photon
sphere can be. Note that naked singularities without photon spheres arise when physically realistic collapse
models are considered, such as the JMN-2 model [113].

Photons emitted from the close vicinity of either JMN naked singularity are highly redshifted. However, this
is compensated by the fact that the rate of emission of photons from the accretion flow in the vicinity of the
singularity is large. The redshift of photons emitted in the forward direction of the accretion flow is smaller
than those emitted in the backward direction. Therefore, although the contribution of “backward photons” may
be highly suppressed, “forward photons” turn and escape (in the absence of a photon sphere), contributing to
the intensity profile. The center of the image in the observer’s sky corresponds to photons with zero impact
parameter. Such photons originate from the close vicinity of the singularity as well as from the accreting
matter in between the singularity and the observer, along the line joining them. We note also that the redshift
is irrelevant when considering the formation of shadows and full-moon images due to distant extended sources
of light, as discussed in §3.3 and §3.4, since the blueshift suffered by a photon in going from the source to the
turning point nearly cancels out the redshift suffered by it in going from the turning point to a faraway observer.
In that case, the total redshift suffered by the photon is simply determined by the relative redshift between
the source and observer’s positions. When both the light source and the observer are at large distances, this
redshift is negligible.
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(a) 𝑀 = 1.0, Schwarzschild black hole (b) 𝑀 = 1.0, Schwarzschild black hole

(c) 𝑀0 = 0.7, JMN-1 naked singularity (d) 𝑀0 = 0.7, JMN-1 naked singularity

(e) 𝑀0 = 0.6, JMN-1 naked singularity (f) 𝑀0 = 0.6, JMN-1 naked singularity

Figure 3.4: The images in the left column shows how an optically thin emission region looks like when
surrounding a Schwarzschild black hole (a) or a JMN-1 naked singularity, with 𝑀0 = 0.7 (b) and 𝑀0 = 0.6 (c).
The corresponding intensity distributions as a function of the impact parameter are shown in the right column.

All spatial coordinates are in units of 𝑀 .
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(a) 𝑀 = 1.0, Schwarzschild black hole (b) 𝑀 = 1.0, Schwarzschild black hole

(c) _ = 0.8, JMN-2 naked singularity (d) _ = 0.8, JMN-2 naked singularity

(e) _ = 0.4, JMN-2 naked singularity (f) _ = 0.4, JMN-2 naked singularity

Figure 3.5: The images in the left column shows how an optically thin emission region looks like when
surrounding a Schwarzschild black hole (a) and the JMN-2 naked singularity, with _ = 0.8 (b) and _ = 0.4 (c).
The corresponding intensity distributions as a function of the impact parameter are shown in the right column.

All spatial coordinates are in units of 𝑀 .
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3.6 Shadows and Images of more realistic Accretion Flows around
Black Holes and Naked Singularities

We now describe a more realistic model of the accretion flow with several improvements: (i) we consider a
physically motivated emissivity prescription, (ii) we analyze the spectrum of the radiation, and (iii) we avoid
the assumption of optically thin emission. As we show, the results are similar to those obtained in §3.5.

3.6.1 The Model

With a view to specializing to the case of the Galactic Center compact object Sagittarius A∗ (Sgr A★), we
consider a specific value for the mass of the central object: 𝑀 = 4 × 106𝑀⊙ . As in §3.5, we assume a
spherically symmetric accretion flow, except that we set up the dynamics as in the Bondi accretion model
[296]. Thus, we assume that the compact object is embedded in a uniform external medium with a temperature
𝑇∞ and density 𝜌∞. We choose 𝑇∞ = 107 K, as appropriate for Sgr A★. For this choice, the Bondi radius, i.e.,
the transition radius where the flow changes in character from a uniform external medium to a freely-falling
inner accretion flow, is 𝑟𝐵 ≈ 106𝑀 . We keep 𝜌∞ as a free parameter which we adjust (thereby tuning the mass
accretion rate) such that the luminosity of the resulting accretion flow in the sub-millimeter band matches
the observed flux of Sgr A★. Finally, in the spirit of the Bondi model, and in keeping with §3.5, we take
the velocity profile of the accreting gas to be given by equation equation 3.5.3, using the appropriate 𝑓𝑖 (𝑟)
and 𝑔𝑖 (𝑟) for each model. However, we modify the radial velocity profile at large radii so that the velocity
transitions from the standard free-fall scaling, 𝑣𝑟 ∝ 𝑟−1/2, at radii inside the Bondi radius to 𝑣𝑟 ∝ 𝑟−2 outside
the Bondi radius (as required for a constant mass accretion rate with a uniform gas density at large radii).

We assume that the accreting gas radiates thermal synchrotron and bremsstrahlung, and that the emitted
radiation is Compton-scattered as it propagates out of the system. The radiation is treated via a complete
radiative transfer model using the transfer code HEROIC [297, 298], with the relativistic enhancements
described in [299]. In this code, a large number of ray directions is considered at each point in the accretion
flow and the relativistic radiative transfer equation, which considers both emission and absorption, is solved for
each ray over a grid of frequencies extending from a = 108 Hz to 1024 Hz. HEROIC was originally written for
the Kerr spacetime, and all previous applications were restricted to that spacetime. For the present application,
the code was generalized to handle the JMN-1 and JMN-2 spacetimes as well.

The radiative transfer computations enable us to compute the luminosity and radiative spectrum of the emerging
radiation for each model. In addition, they also provide the net cooling (if emission dominates) or heating
(if absorption dominates) of the accreting gas. We include this cooling/heating information in the energy
equation of the accreting gas to solve for the temperature profile 𝑇 (𝑟) of the flow2. In other words, the only
temperature information we input to the model is the boundary condition at infinity (𝑇∞ = 107 K), which sets
the location of the Bondi radius. The temperature everywhere else is obtained self-consistently as part of the
solution.

The numerical computations are done on a uniform grid in log 𝑟 , with 20 points per decade. The grid extends
from an outer radius 𝑟max = 106.5𝑀 (a factor of a few larger than the Bondi radius) down to an inner radius

2For simplicity, we assume that the gas is a single-temperature plasma, although it is likely that the accreting gas in Sgr A★ is a
two-temperature plasma [300]
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𝑟min. In the case of the Schwarzschild black hole, we choose 𝑟min to be just outside the horizon, specifically,
log 𝑟min = 0.35. We assume absorbing boundary conditions at the inner edge of the grid, i.e., any radiation
that crosses the horizon is lost from the system. For the two naked singularity models, we would ideally like to
set 𝑟min = 0, but this is not possible because of our use of a logarithmic grid. Hence, we use a small non-zero
value, 𝑟min = 10−4𝑀 , again assuming absorbing boundary conditions.

3.6.2 Spectra and Temperature Profiles

Figure 3.6a shows spectra corresponding to five different models: Schwarzschild black hole (red curve),
JMN-1 naked singularity with 𝑀0 = 0.7 (green) and 𝑀0 = 0.6 (blue), and JMN-2 naked singularity with
_ = 0.8 (magenta) and _ = 0.4 (cyan). In each model, the mass accretion rate has been adjusted (by varying
the density 𝜌∞ of the external medium) so as to give the same luminosity, a𝐿a = 1034.6 erg s−1 at a = 200 GHz
(indicated by the black dot), as seen by an observer at infinity. This is approximately the luminosity of Sgr A★.

As explained in previous sections, of the five spacetime models under consideration, only two have photon
spheres, viz., the Schwarzschild black hole and the JMN-1 spacetime with 𝑀0 = 0.7. Not surprisingly, these
two models have nearly identical spectra. The primary peak at 1011 Hz is due to thermal synchrotron radiation
from hot electrons at radii near the photon sphere. The other peaks are the result of Compton scattering, with
a small contribution from bremsstrahlung in the last peak.

The Schwarzschild model and the JMN-1 model with 𝑀0 = 0.7 are much less luminous than the other three
models (JMN-1 𝑀0 = 0.6, JMN-2 _ = 0.8, JMN-2 _ = 0.4). The latter three spaceimes lack photon spheres
and therefore allow radiation to escape more easily from the interior. As a result, they appear to be substantially
more luminous, by orders of magnitude, for an observer at infinity.

Figure 3.6b shows the temperature as a function of radius for the same five models. All have essentially the
same profile at radii larger than a few 𝑀 , where the primary physical effect is compressive heating (𝜌 ∝ 𝑟−3/2

implies 𝑇 ∝ 𝑟−1 at nonrelativistic temperatures) as gas flows in from the Bondi radius towards the center. At
smaller radii (𝑟 < 𝑀), the gas in the four naked singularity models cools to much lower temperatures. Here
the gas density is large enough that radiative cooling becomes important. Although much of the radiation is
beamed towards small radii, nevertheless enough escapes to cause an enhanced luminosity at infinity. The
only exception is the JMN-1 𝑀0 = 0.7 model where, because of the presence of a photon sphere, the amount
of radiation that escapes to infinity is highly suppressed.

3.6.3 Images and Shadows

Figure 3.7 shows images corresponding to the accretion models under discussion. Only radiation with
frequencies between 200 and 250 GHz is considered (initial EHT results will be at 230 GHz). The results
are qualitatively similar to those shown in figures 3.4 and 3.5. Specifically, the Schwarzschild black hole and
the JMN-1 naked singularity with 𝑀0 = 0.7 have well-defined dark shadows, consistent with the existence of
photon spheres in these two models. The other three models, JMN-1 with 𝑀0 = 0.6, JMN-2 with _ = 0.8 and
JMN-2 with _ = 0.4, all have filled centers, i.e., they have “full-moon” images, consistent with the lack of
photon spheres.
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Figure 3.6: We show in panel (a) the spectra of models with a Schwarzschild black hole (red), JMN-1
naked singularity with 𝑀0 = 0.7 (green, under red) and 𝑀0 = 0.6 (blue), and JMN-2 naked singularity with
_ = 0.8 (magenta) and _ = 0.4 (cyan). In panel (b), we show the radial temperature profiles of models with
a Schwarzschild black hole (red), JMN-1 naked singularity with 𝑀0 = 0.7 (green) and 𝑀0 = 0.6 (blue), and

JMN-2 naked singularity with _ = 0.8 (magenta) and _ = 0.4 (cyan).
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Figure 3.7: Shows images in the mm band (200–250 GHz) for the accretion models described in §3.6. All
the panels use the same (arbitrary) color scale. Top Row: From left to right, the images correspond to the
Schwarzschild black hole, JMN-1 naked singularity with 𝑀0 = 0.7, and JMN-1 with 𝑀0 = 0.6. The dark spot
at the center of the third image is because the inner edge of the grid is at 𝑟 = 10−4𝑀 rather than at 0. Bottom
Row: The left two images correspond to the JMN-2 naked singularity with _ = 0.8 and _ = 0.4, respectively.
The rightmost panel corresponds to the same model as the one above it (JMN-1, 𝑀0 = 0.6), except that the

inner edge of the grid in this case is at 𝑟 = 10−3𝑀 .
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We emphasize that the accretion model considered here, which includes substantially more radiation physics,
is significantly different from that in §3.5. Also, the images in figure 3.7 correspond to the mm-band, whereas
in §3.5 we considered monochromatic emission and counted all the radiation. As a result, there are some
quantitative differences between figure 3.7 and figures 3.4, 3.5. The rings around the shadows are somewhat
narrower in the present models, and the full-moon images are somewhat smaller in angular size. Nevertheless,
the qualitative results are very similar.

One feature that needs discussion is the dark spot at the center of the full-moon images in figure 3.7. This
is an artefact. Because the metrics of the two JMN naked singularity spacetimes have power-law behaviour
as 𝑟 → 0, it is necessary to use a logarithmic grid in 𝑟 when computing numerical models. As a result, the
grid has to be truncated at some finite radius. For the calculations presented here, we used an inner radius of
𝑟𝑚𝑖𝑛 = 10−4𝑀 . This is well inside the boundary radius 𝑅b where the naked singularity interior is matched
with the Schwarzschild exterior. Nevertheless, the truncation does result in a small dark spot at the center
of the image, caused by the missing spacetime inside 𝑟𝑚𝑖𝑛. To illustrate better the effect of this truncation,
the two panels in the rightmost columnn of figure 3.7 show images corresponding to the same model (JMN-1
𝑀0 = 0.6) except that the upper panel corresponds to 𝑟min = 10−4𝑀 , while the lower panel corresponds to
𝑟min = 10−3𝑀 . The former has a smaller dark spot than the latter, confirming that the spot will disappear in
the limit 𝑟min → 0.

Figure 3.8 shows radial profiles of the image intensity as a function of impact parameter for the five models.
The profiles in the mm band (left panel) are quite different from those based on the bolometric radiation (right
panel). The latter are more similar to the profiles shown in figures 3.4 and 3.5 (but note that those use a linear
scale whereas figure 3.8 employs a logarithmic scale).

3.7 Conclusions

Here, following [121], we analyzed images produced by two spherically symmetric models of naked singulari-
ties, and compared them with the image produced by a spherically symmetric (Schwarzschild) black hole. We
showed that naked singularities could, in some cases, cause shadows that are very similar to those produced
by black holes, but in other cases, the two would have very different image structures and would be clearly
distinguishable. It follows that a careful investigation of the shadow structure will be needed before the EHT
can confirm the existence of an event horizon, and thus a black hole, in Sgr A★.

To expand on the above point, even if the EHT finds a shadow in Sgr A★, it will not conclusively establish
the presence of a black hole in this object. The same shadow could be produced by certain naked singularity
models. Among the two naked singularity models analyzed here, called JMN-1 and JMN-2, we find that JMN-
1 will produce shadows whenever the parameter 𝑀0 (see equation 3.2.1) lies in the range 𝑀0 ≥ 2/3. This is
equivalent to the condition that the matching radius 𝑅b between the naked singularity interior spacetime and
the exterior Schwarzschild spacetime satisfies 𝑅b < 3𝑀 , where 𝑀 is the mass of the object. JMN-1 models
that do not satisfy the above condition lack a shadow, and produce what we term a “full-moon” image. The
JMN-2 model produces a full-moon image for all physically allowed choices of its parameters.

The fact that a shadow does not automatically imply an event horizon was already emphasized by [280], who
showed that a model of Sgr A★ with a hard surface will also produce a shadow in mm-band images. The total
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Figure 3.8: Left: Radial profiles of the mm band (200–250 GHz) image intensity versus the impact parameter
𝑏/𝑀 for the Schwarzschild black hole (red), JMN-1 naked singularity with 𝑀0 = 0.7 (green, under red) and
𝑀0 = 0.6 (blue), and JMN-2 naked singularity with _ = 0.8 (magenta) and _ = 0.4 (cyan). The solid and
dashed blue lines correspond to the same model, but with 𝑟min = 10−4𝑀 (solid) and 𝑟min = 10−3𝑀 (dashed).
Right: Corresponding results when the bolometric radiation (108 − 1024 Hz) is considered. Note the change in

the vertical scale.
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spectrum would, however, be different. In particular, those authors argued that observations in the infrared
would easily distinguish a hard-surface model from a true black hole, because the emission from the surface
would dominate in the infrared.

The naked singularity models that produce shadows, viz., JMN-1 with 𝑀0 ≥ 2/3, 𝑅b ≤ 3𝑀 , are different in
that their images and spectra at all wavelengths are nearly identical to those of a black hole (compare the red
and green curves in figures 3.6 a, 3.8). Distinguishing these models will thus be much more difficult.

The full-moon image produced by the remaining naked singularity models we considered is also interesting.
If such an image were observed, it would certainly rule out a black hole. Whether or not it would confirm the
presence of a naked singularity remains to be seen since other non-black hole models might also produce such
images.

Similar results to those described here are obtained when we consider the Schwarzschild solution with a scalar
field, the so called JNW naked singularity spacetimes [6]. For a range of parameter values, these spacetimes
admit a photon sphere, and for other parameter values they do not. In that case as well, the two kinds of models
produce shadows and full-moon images, respectively. These results will be reported elsewhere.

Finally, we note that both the JMN-1 and JMN-2 models are characterized by two parameters, namely, the
mass parameter 𝑀0 and the matching radius 𝑅b. The occurrence of a naked singularity in these models is
stable with respect to variations in these two parameters, but this stability is limited since it is restricted to
these specific spherically symmetric models.

More generally, the mode stability of the JMN spacetimes as well as their stability against fluid perturbations
are unproven and are currently under investigation. Because of this, the astrophysical relevance of the specific
models considered here is uncertain. On the other hand, the qualitative results presented here regarding the
nature of images and shadows are likely common for a wide class of naked singularity models. In this sense,
however, the theoretical implications of our results are indeed astrophysically relevant. It is important to keep
this in mind, since the EHT is already operational and collecting data. Specifically, we emphasize that shadows
are not a consequence of event horizons, but of photon spheres. Therefore, if an object casts a shadow, it does
not have to necessarily possess an event horizon.

We look to working on generalizing the solutions discussed here to rotating naked singularity models. It would
be physically much more realistic to compare the shadow structure of such rotating naked singularities with
shadows produced by a Kerr black hole.
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Gravitomagnetism near Black Holes and
its effect on Pulsars1

4.1 Overview

Here the focus will be on effect that gravitomagnetism, intrinsic to stationary black hole or naked singularity
spacetimes, has on the appearance of a pulsar present near such compact objects, with the aim of extracting
properties of the background spacetime.

Towards this end, we will use pulsars as a probe, and model it here via the standard lighthouse model, i.e. the
pulsar spins around its own axis with a conserved intrinsic spin-angular momentum, at a constant spin angular
frequency. We assume that this angular frequency doesn’t change considerably even when the pulsar enters
strong gravitational fields. The direction in which the beam of radiation is emitted rotates around its spin-axis
at a fixed angle, at this frequency. The large mass ratio between intermediate-mass BHs (102−104𝑀⊙; IMBHs)
or super-massive BHs (105−109𝑀⊙; SMBHs) and pulsars (∼1.5𝑀⊙; see for example [301–303]) allows for
a test spinning particle approximation for the pulsars. We will discuss this approximation in some more
detail in eventual sections. Further, here we neglect spin-curvature coupling, which causes deviations in the
world-lines of spinning particles from the world-lines of non-spinning particles [304, 305]. That is, we model
pulsar motion by the motion of a test particle in the Kerr spacetime and simply account for the evolution of
its intrinsic spin angular momentum along its world-line via the Fermi-Walker transport law. This enables
us to bypass solving the full Mathisson-Papapetrou-Dixon equations [306–308] that govern the dynamics of
spinning objects in general relativity, and this effect will be incorporated elsewhere.

We will not restrict our study to pulsars that only move along geodesics for two reasons: firstly, the magnitude
of the spin-precession frequency is larger for accelerating pulsars and it would be astrophysically significant if
one could observe such pulsars even for a short period of time, as we argue below. Next, we want to understand
the effects of acceleration on their appearance since in realistic astrophysical scenarios there can be various
sources of accelerations for pulsars. For example, gravitational waves emitted by a nearby compact binary
could cause a pulsar to accelerate. Other causes could be due to interactions with other astrophysical objects

1Reprinted excerpt with permission from [P. Kocherlakota, P. S. Joshi, S. Bhattacharyya, C. Chakraborty, A. Ray, and S. Biswas,
To appear in Mon. Not. R. Astron. Soc. (2019).]. Copyright (2019) by the Oxford University Press.
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via scattering processes in dense regions like globular clusters or active galactic nuclei, or due to the supernova
kicks that birth them.

Another important source of acceleration is the aforementioned coupling of the spin angular momentum to
the background tidal tensor. This acceleration is proportional to the magnitude of the spin of the test object
and to the rate of the fall-off of the strength of the gravitational field across it, which is captured by the tidal
tensor 𝑅`

a𝜌𝜎 . Recently, in [138] it was demonstrated that the motion of a millisecond (ms)-pulsar (which have
spins of ≈.3787m2, using a spherical model for the pulsar) present close to a BH (𝑟 ≲ 50𝑀BH), with mass
in the range 𝑀BH ≈ 103 − 106𝑀⊙ , exhibits deviations from geodesic motion due to the acceleration arising
from spin-curvature coupling. Strikingly, it is found there that the motion of the pulsar becomes non-planar
due to spin-curvature coupling, and the pulsar leaves the 𝑥−𝑦 plane. They show how the complexity of the
orbit increases with increase in spin and with decrease in mass of the BH. Notably, the ‘𝑧-signal’ is potentially
observable through variation in pulse arrival time over arrival times that would result if the pulsar stayed in a
planar orbit. They argue that it is reasonable to expect the path length of the ray from the pulsar to the Earth to
vary by ±5 km from the path length of a ray from a pulsar in an otherwise similar planar orbit, which translates
to a timing change estimate of the order of ±10`𝑠. In a subsequent study [309], the orbit-precession of these
ms-pulsars (non-zero spin-curvature coupling) was analysed and the usual de Sitter and Lense-Thirring pieces
were obtained. Additional contributions arising from spin-curvature coupling and the coupling of the pulsar’s
spin to its orbital angular momentum (see for example equation 18 therein) were also reported, a consequence
of which is that orbit-precession is enhanced. Further, spin-precession experienced by such a pulsar was
also carefully analysed numerically, and it is shown that the spin-precession frequency due to spin-orbit and
spin-spin coupling decays with an increase in orbit-radius of the pulsar as ∝ 𝑀BH/𝑟 . In particular, they point
out that these couplings cannot be ignored for systems that qualify as intermediate-mass-ratio binaries i.e.,
𝑀BH/𝑚p ∼ 102 − 103, with 𝑚p being the mass of the pulsar. The upshot of their findings are that spin-
precession causes the times of arrival and widths of pulses to change. For example, for a ms-pulsar present
about 20𝑀BH away from a Schwarzschild BH, with mass in the range 103−106𝑀⊙ , shifts in the times of arrival
of pulses accumulate to about 2.5 `s every ∼35s.

On a related note, considering the effect of spin-curvature on the dynamics of a spinning object to be negligible
(as is done in the present work) is an excellent approximation for pulsars that are sufficiently slowly-spinning
[310] or when they are present in regions where the background tidal tensor is very small. It is useful to
remember that the tidal tensor decays with increase in distance from and mass of the BH. Therefore, our
calculations apply very well for normal pulsars around massive BHs, and even for ms-pulsars when they are
either about 𝑟 ≳ 50𝑀 away from the BH or if they are near a BH with mass larger than about 106𝑀⊙ [138, 309].

To be precise, here we consider pulsars to be moving along the world-lines of equatorial Killing observers in the
Kerr spacetime. The trends in the accelerations experienced by such observers, with changes in orbit-radius,
BH parameters etc. is carefully discussed in appendix C. Further, the spin-precession frequencies experienced
by spinning objects on these orbits do not vary with time, which greatly simplifies our calculations. Therefore,
the observers we will be interested in are: (a) static Killing observers: observers whose spatial position remains
unchanged over time, and (b) stationary Killing observers: observers that move on equatorial circular orbits.
Although the former class of static observers form a proper subset of the latter class of stationary observers,
it will be useful for our purposes to demarcate the two. Further, the class of stationary orbits contains the
astrophysically important set of equatorial circular geodesics. Now, we find here, from a purely analytical
calculation, that as the spin-axis of a pulsar precesses, it pulls the beam vector along with it, and this leads to
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a modification in the pulse frequency as seen from the earth. Thus, due to stationary gravitational fields, this
frequency is no longer simply equal to the intrinsic spin angular frequency of the pulsar about its axis. In our
concluding section, we point out how this is a promising first step in this new story of pulsars and black holes
involving spin-precession, and discuss more physically interesting extensions.

Apart from the few we have already mentioned, there have been other significant initiatives to advance our
understanding about strong field gravity effects in recent years like the event horizon telescope, which aims to
probe the physics of very strong gravity regions near the event horizon. Notably, EHT reported constructing
the first event-horizon-scale image of the supermassive BH candidate thought to be present at the center of
the M87 galaxy [120]. From such a perspective, we investigate here effects of gravitomagnetism on observed
pulsar periods in the strong field region of the Kerr spacetime and use primarily the strong field results of
[151, 311, 312] to obtain the frequency of spin-precession for pulsars located deep inside strong gravitational
fields.

The outline of this chapter is as follows. In §4.2, we attempt to provide a quick primer on how the equation
of motion of a test spinning object present in a gravitational field is derived in general relativity. In §4.3, we
review the properties of Killing observers in the Kerr spacetime. In §4.3.1, we will discuss the adapted-Kerr
spacetime, which is obtained by choosing coordinates co-moving with a particular observer moving on a
circular orbit, and demonstrate that one can treat stationary observers in the Kerr spacetime as static observers
in the adapted-Kerr spacetime. We will argue that this simplifies the problem of characterizing the accelerations
and spin-precession frequencies for the full class of stationary observers in §4.3.2, following [151]. We then
briefly discuss the features of the spin-precession frequencies experienced by arbitrary Killing observers in
§4.4 and restrict to the astrophysically interesting case of equatorial Killing observers in §4.5. In §4.6, we
work out the complete time evolution of the beam vector for static pulsars and obtain their observed pulse
frequencies, without approximation. In §4.6.6, we extend this analysis to pulsars moving on equatorial circular
orbits around the central object at constant angular speeds. In §4.7 and §4.8, we explore the astrophysical
consequences of our work, reported in [125], and conclude with a quick summary and a few comments on
possible future extensions.

Conventions: Greek and Latin indices (with the exception of 𝑖, 𝑗 , 𝑘) run from 0–3. 𝑖, 𝑗 , 𝑘 take values 1–3.
Hatted indices represent components projected onto a tetrad. We will also switch to the Euclidean three-vector
notation in sections where all entities will be calculated relative to a spatial triad, i.e. 𝑎𝑖 → ®𝑎. Also, when 𝑏𝑖

denotes a unit three-vector, we shall write 𝑏𝑖 → �̂�. This switch will be highlighted explicitly whenever made.

4.2 Interaction of Spin with Gravity in General Relativity2

The notion of intrinsic spin angular momenta is slightly nuanced in general relativity and so we begin with a
very quick review of these ideas, and proceed to discuss the outline of the derivation of the equation of motion
of a test spinning object in GR.

Before we begin, let us first remember that an extended object in non-relativistic Galelei-Newtonian mechanics,
whose mass density and velocity at a general material point 𝑟𝑖 are denoted by 𝜌, 𝑢𝑖 , has total linear 𝑝𝑖 and

2See [151, 308, 313] for this section.



86 Chapter 4

angular momentum 𝑆𝑖 𝑗 defined as,

𝑝𝑖 =

∫
d𝑉𝜌𝑢𝑖 , 𝑆𝑖 𝑗 = 2

∫
d𝑉𝜌𝑟 [𝑖𝑢 𝑗 ] . (4.2.1)

Under the influence of no forces barring gravity, given by a Newtonian gravitational potential Φ, it’s dynamics
is completely specified via,

d𝑝𝑖
d𝑡

= −
∫

d𝑉𝜌𝜕𝑖Φ, (4.2.2)

d𝑆𝑖 𝑗
d𝑡

= 2𝑝 [𝑖𝑣 𝑗 ] − 2
∫

d𝑉𝜌𝑟 [𝑖𝜕 𝑗 ]Φ. (4.2.3)

In GR, the equations of motion of an arbitrary distribution of matter that moves freely in a background
spacetime with metric 𝑔`a are obtained simply by demanding that its energy-momentum tensor 𝑇 `a be
covariantly conserved,

∇`𝑇
`a = 0. (4.2.4)

In a seminal paper [308], it was pointed out that the energy-momentum tensor 𝑇 `a of such a material object
can be expanded into an infinite set of multipole moments, depending on the strength of the background
Riemann tensor, enabling an expansion approach to solve the full set of equations of motion (4.2.4), similar to
the non-relativistic case. Following [313], we represent the multipoles via the integrals,∫

𝑥0=const

√︁
−|𝑔 |d3𝑥 𝑇 `a𝛿𝑥𝛼1 · · · 𝛿𝑥𝛼𝑛 , (4.2.5)

where |𝑔 | ≡ det(𝑔`a), and the above integrals are calculated around a certain representative world-line 𝑋𝛼 (𝜏)
chosen within the object. 𝛿𝑥𝛼 ≡ 𝑥𝛼 − 𝑋𝛼 is a deviation from the representative world-line of a material point
𝑥𝛼 in the volume of the object and 𝜏 is the proper time of the representative world-line 𝑋𝛼.

In this construction, the first two moments of 𝑇 `a over the volume of the body turn out naturally to be the
energy-momentum vector 𝑝` and the intrinsic spin angular momentum 𝑆`a of the object,

𝑝` =

[∫
𝑥0=const

√︁
−|𝑔 |d3𝑥 𝑇 `0

]
+ Γ

`
𝜌𝜎

𝑢𝜌

𝑢0 S
𝜎0,

= 𝑚𝑢` − 𝑢a𝑢𝛼∇𝛼S`a , (4.2.6)

S`a =

∫
𝑥0=const

√︁
−|𝑔 |d3𝑥

(
𝑇 a0𝛿𝑥` − 𝑇 `0𝛿𝑥a

)
, (4.2.7)

where𝑚 is the kinematical or monopole rest mass of the particle, 𝑢` is its kinematical four-velocity (tangent to
the object’s representative world-line 𝑥` (𝜏)), andS`a is its intrinsic spin angular momentum, an antisymmetric
two-tensor.

It can be seen that the Newtonian gravity analogue of this expansion technique is obtained by replacing the
Riemann tensor 𝑅`

a𝜌𝜎 of general relativity with spatial derivatives of the classical Newtonian gravitational
potential Φ on the one side, and the energy-momentum tensor 𝑇 `a with the mass density 𝜌 of the object under
study on the other (see §1 of [308]).

The evolution equations (4.2.4) in terms of these moments (4.2.5) reduce to a set of equations in powers of
(𝑅/𝑙)𝑛, where 𝑅 is the size of the object and 𝑙 is the background curvature length-scale and is given in terms of
the Riemann tensor 𝑅`

a𝜌𝜎 . Now, when the size of the material object is sufficiently small enough compared to



Chapter 4 87

the background curvature length-scale, all its multipoles beyond its dipole can be neglected and the dynamical
problem is greatly simplified. Such an approximation is called the pole-dipole approximation and is useful in
the treatment of test spinning objects.

That is, for a pulsar of mass and radius 𝑚𝑝 , 𝑅𝑝 present in the vicinity of a Kerr black hole whose mass
and angular momentum are 𝑀, 𝐽, and for a radial separation between their centre of masses given by 𝑟, this
implies that when 𝑚𝑝 ≪ 𝑀 < 𝑟 and 𝑅𝑝 ≪ 𝑟 , the interaction of the pulsar’s spin quadrupole moment with
inhomogeneities of the gravitational field can be neglected, and the interaction is dominated by the two lowest
moments. Under these circumstances, the pulsar can be treated as a a classical pole-dipole spinning particle
and the governing equations (4.2.4) reduces to the Mathisson-Papapetrou equations [306, 307],

𝑢𝛼∇𝛼𝑝
𝜎 = −1

2
𝑅𝜎

𝜌`a𝑢
𝜌S`a , (4.2.8)

𝑢𝛼∇𝛼S`a = 𝑝`𝑢a − 𝑝a𝑢` . (4.2.9)

The term appearing on the right in equation 4.2.8 is the famed spin-curvature coupling, which was explored
notably in [304, 305], and is responsible for the deviation from geodesic motion of spinning particles.

Further, the above equations of motion (4.2.8, 4.2.9) do not form a closed set of first order differential equations;
there are 4+3 equations for 10 unknowns: 𝑚, 𝑢` (3) and S`a (6) (see for example [313]). Therefore one needs
to specify a set of three supplementary conditions, which amount to specifying the reference point 𝑋𝛼 (𝜏)
about which the momentum and spin of the particle were calculated in equation 4.2.5. This is usually taken
to be the centre of mass of the particle which, however, is frame-dependent [314]. Here we choose the set of
supplementary conditions to be given by the Pirani condition [315],

S`a𝑢a = 0, (4.2.10)

A condition of the sort given above is an algebraic condition on the components of the spin tensor components.
Specifically, the Pirani condition above has the implication that the spin tensor will have support only in
directions transverse to the four-velocity 𝑢` of the spinning object. We direct the reader to see [316, 317]
for a detailed discussion on these supplementary conditions. Equivalently, this is the statement that the spin
angular momentum vector which is defined by duality,

S` = − 1
2𝑚

𝜖`a𝛼𝛽 𝑝
aS𝛼𝛽 , (4.2.11)

lies in the corresponding local rest space.

More generally, when a force acts on the centre of mass of the spinning object, generating an acceleration
𝛼` = ∇𝑢𝑢, the intrinsic spin angular momentum vector S` satisfies3 (see for example [172]),

∇𝑢S = (S·𝛼)𝑢, (4.2.12)

where (·) represents an inner product. When no forces or torques are applied to a spinning object with low
spin angular momentum S`, the equation governing the world-line of the spinning particle (4.2.8) reduces to

3In favour of a cleaner representation of the mathematics, we will suppress the space-time indices for the rest of this section. We will
also not use boldfaced letters to represent tensors as was the case in Chapter 2.
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the geodesic equation for the orbital motion of a point-like spinless object in an background gravitational field
[310].

When using the Pirani supplementary condition (4.2.10), the evolution equation for spin angular momenta
(4.2.12) is equivalent to the statement that they are Fermi-Walker (FW) transported ([148]; also see for example
[8]),

F𝑢S = 0, (4.2.13)

where in the above we have introduced the Fermi derivative of a vector field 𝑋 along 𝑢 as [147],

F𝑢𝑋 = ∇𝑢𝑋 − (𝑋 ·𝛼)𝑢 + (𝑋 ·𝑢)𝛼, (4.2.14)

It is clear that along a geodesic i.e. for 𝛼 = 0, Fermi-Walker transport reduces to parallel transport.

The advantage of employing the Pirani condition (4.2.10) is that we can now restrict to analysing the evolution
of the space-like spin three-vector 𝑆. This is best accomplished by constructing an orthonormal frame spanned
by three space-like vectors, which are also orthogonal to the four-velocity 𝑢, all along the world-line of the
spinning object and projecting the evolution equation (4.2.13) onto this triad. The Frenet-Serret (FS) tetrad
comprises of precisely such a set of four orthonormal vectors, three spacelike with the timelike leg being
the four-velocity of the spinning object. The FS tetrad is also one of the most natural frames associated
with a given curve because it is invariant under reparametrization and captures inherent differential geometric
properties of the curve, namely its generalized curvatures, which play a fundamental role in the analysis of the
evolution of their spin vectors, as we shall discuss below.

Furthermore, since in the present chapter we will consider only the evolution of spin vectors carried by Killing
observers of the Kerr spacetime, it is important to note that this choice of tetrad is particularly convenient: it
was pointed out by [151] that for Killing observers in arbitrary stationary spacetimes the associated FS tetrad
and generalised curvatures are all time-independent, simplifying our analysis greatly. Furthermore, after a
review of the properties of Killing observers of the Kerr spacetime, we will discuss also why our choice to
study pulse profiles of pulsar moving on Killing orbits is of fundamental physical importance.

The FS tetrad attached to an observer that moves along an arbitrary time-like world-line comprises of a set
of four orthonormal vector fields {𝑒 �̂�, (�̂� = 0−3)} and is constructed as follows. The timelike leg is simply
defined to be the four-velocity along the world-line, 𝑒0̂ = 𝑢. Next, 𝑒1̂ will be defined to be the normal to the
curve and to find it, we introduce the directional derivative along the four-velocity, denoted by an overdot,
¤= ∇𝑢 = 𝑑/𝑑𝜏. That is,

¤𝑒0̂ = ^𝑒1̂, (4.2.15)

where ^ = ( ¤𝑒0̂ ·𝑒1̂) measures the curvature of the world-line relative to the osculating plane spanned by 𝑒0̂ and
𝑒1̂. Note that since 𝑒0̂ is normalised, ¤𝑒0̂, and hence 𝑒1̂, is orthogonal to it. This is clear if we recognise that
𝛼 = ^𝑒1̂ is simply the four-acceleration of the observer, and that ∇𝑢 (𝑢.𝑢) = 0 ⇒ 𝛼.𝑢 = 0. Now, we turn to ¤𝑒1̂.
This vector will be a linear combination of 𝑒0̂, 𝑒1̂ and a unit vector 𝑒2̂ orthogonal to the osculating plane. Yet
again, since 𝑒1̂ has unit-norm, we can write,

¤𝑒1̂ = ^𝑒0̂ + 𝜎1𝑒2̂, (4.2.16)
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where 𝜎1 = ( ¤𝑒1̂·𝑒2̂) is called the first torsion. Proceeding similarly to the above, the following picture emerges.
The tetrad legs {𝑒 �̂�, (�̂�=0−3)} are respectively the tangent, normal, binormal and trinormal vectors along the
world-line of the observer and satisfy,

(𝑒 �̂� ·𝑒𝛽) = [ �̂�𝛽 . (4.2.17)

In terms of the generalized curvatures (^, 𝜎1, 𝜎2), the evolution equations of the tetrad legs along the world-line
can be written out succinctly as,


¤𝑒0̂

¤𝑒1̂

¤𝑒2̂

¤𝑒3̂


=


0 ^ 0 0
^ 0 𝜎1 0
0 −𝜎1 0 𝜎2

0 0 −𝜎2 0



𝑒0̂

𝑒1̂

𝑒2̂

𝑒3̂


, (4.2.18)

where in the above we introduced 𝜎2 = ( ¤𝑒2̂ · 𝑒3̂) the second torsion. 𝜎1, 𝜎2 measure the deviation of the
world-line from being a planar curve restricted to the osculating plane. The curvature ^ has been identified
as being the particle acceleration and the two torsions are directly related to spin-precession, as we shall see
below.

Since we want to analyse the evolution of the spin vector in this tetrad, and we know that it is FW-transported
along its world-line (4.2.13), we now study the FW-transport of the FS tetrad. We obtain immediately that
(see [172]),

F𝑢𝑒 �̂� = 𝜔
𝛽

�̂�
𝑒𝛽 , (4.2.19)

where 𝜔 𝛽

�̂�
is given as,

𝜔
𝛽

�̂�
=


0 0 0 0
0 0 𝜎1 0
0 −𝜎1 0 𝜎2

0 0 −𝜎2 0


, (4.2.20)

The FW-transport of the FS tetrad (4.2.19) along with the equation of motion of the spin vector (4.2.13) imply
that the spin three-vector 𝑆 = 𝑆𝑖𝑒𝑖 satisfies4,

¤𝑆𝑖𝑒𝑖 + 𝑆 𝑗F𝑢𝑒 𝑗 = 0, (4.2.21)

and we have,
¤𝑆𝑖 = 𝜔𝑖

𝑗
𝑆 𝑗 . (4.2.22)

That is, the spin of the gyroscope precesses relative to the FS spatial triad {𝑒𝑖 , 𝑖 = 1, 2, 3} with an angular
velocity Ωp,

𝜔𝑖 𝑗 = 𝜖𝑖 𝑗 �̂�Ω
�̂�
p , (4.2.23)

and we can write,
Ωp = −(𝜎2𝑒1̂ + 𝜎1𝑒3̂), (4.2.24)

4F𝑢𝑆
𝑖 = ¤𝑆𝑖 . See §2.10.3 of [172] for a quick review on the properties of the Fermi derivative.
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when the FS spatial triad is right-handed [151]. Then, employing standard three-dimensional vector notation,
in the Euclidean FS triad, we can write equation 4.2.22 as,

¤®𝑆 = ®𝑆 × ®Ωp. (4.2.25)

In the above discussion, we have not imposed any restrictions on 𝑢 barring that it be timelike. In the rest of this
chapter, as mentioned above, we shall restrict 𝑢 to be tangent to arbitrary Killing orbits of the Kerr spacetime
and we now move to a discussion of the spin-precession properties of these observers.

4.3 Killing Observers in the Kerr Spacetime

We remind the reader of the form of the Kerr metric in the standard Boyer-Lindquist (BL) coordinates
𝑥` = (𝑡, 𝑟, \, 𝜙),

d𝑠2 = −
(
1 − 2𝑀𝑟

𝜌2

)
d𝑡2 − 4𝑀𝑎𝑟 sin2 \

𝜌2 d𝑡d𝜙 + 𝐴 sin2 \

𝜌2 d𝜙2 + 𝜌
2

Δ
d𝑟2 + 𝜌2d\2 (4.3.1)

=𝑔00d𝑡2 + 2𝑔03d𝑡 d𝜙 + 𝑔33d𝜙2 + 𝑔11d𝑟2 + 𝑔22d\2.

Here 𝐽 and 𝑀 are the angular momentum and mass of the Kerr collapsed object respectively, and 𝑎 = 𝐽/𝑀 is
the specific angular momentum. Also, Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2, 𝜌2 = 𝑟2 + 𝑎2 cos2 \ and 𝐴 = (𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 \.

The Kerr spacetime possesses a time-like Killing vector, b = 𝜕0, corresponding to time-translational invariance,
and a space-like Killing vector, 𝜓 = 𝜕3, corresponding to azimuthal rotational invariance. A constant-
coefficient linear combination of these two is the most general Killing vector, b ′ = b + Ω 𝜓. The time-
translational Killing vector becomes null on the ergosurface of the Kerr spacetime, which is characterised by
𝑔00 = 0, i.e. on the ergosurface, b2 = (b · b) =𝑔00 = 0. Similarly, it can be shown that b ′2 = 0 is the location
of the event horizon. The ergoradii 𝑟± and the radius of the event horizon 𝑟H are given respectively as,

𝑟± = 𝑀 ±
√︁
𝑀2 − 𝑎2 cos2 \, 𝑟H = 𝑀 +

√︁
𝑀2 − 𝑎2. (4.3.2)

The black hole ergoregion is defined as being the region between the event horizon and the outer ergoradius,
i.e. 𝑟H ≤ 𝑟 ≤ 𝑟+; the ergosurface is defined to be the hypersurface 𝑟ergo = 𝑟+. On the other hand, for a Kerr
naked singularity, the ergoregion is defined to be the region between the two ergoradii, i.e. 𝑟− ≤ 𝑟 ≤ 𝑟+, and
the ergosurface is defined to be the hypersurface 𝑟ergo = 𝑟±. It is to be noted that 𝑟ergo is in fact single-valued,
as can be seen from figure 4.1 (see also [200, 311])5.

A real value for radius of ergosurface for the naked singularity (𝑀 < 𝑎) can be obtained only for a certain
range of \; i.e., the ergoregion does not exist for the spacetime region 0 ≤ \ < cos−1 (𝑀/𝑎). It is evident then
that the ergoregion shrinks towards equator as the spin parameter of the central compact object 𝑎 increases.
In principle, the outer ergoregion never vanishes completely, even for 𝑎/𝑀 → ∞, when it lies only in the
equatorial plane, with its limiting volume being zero. Interestingly, in the BL coordinates, the outer ergoradius
in the equatorial plane is always at 𝑟+ (\ = 𝜋/2) = 2𝑀, irrespective of whether or not a horizon exists.

5Reprinted excerpt with permission from [C. Chakraborty, P. Kocherlakota, and P. S. Joshi, Phys. Rev. D 95, 044006 (2017).]
Copyright (2019) by the American Physical Society

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.044006
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Fathomably, the angular dependence of the ergoradii has interesting implications for the shape of the and
topology of the ergosurface. We highlight in figure 4.1 the distinct difference in the topologies of the
ergoregions of Kerr black holes and naked singularities, in both Boyer-Lindquist and Cartesian Kerr-Schild
coordinates [4]. In panel (e) there, for 𝑎 = 2𝑀 , the ergoregion exists for the range 𝜋/3 ≤ \e ≤ 𝜋/2 and
−𝜋/2 ≤ \e ≤ −𝜋/3, whereas there is no ergoregion for −𝜋/3 < \ne < 𝜋/3. So the radii of the outer and inner
ergoregions in the equatorial plane are 𝑟+ = 2𝑀 and 𝑟− = 0 respectively. The boundaries of inner and outer
ergoregions coincide at \ = 𝜋/3, where the radii of both of the regions are 𝑟+ = 𝑟− = 𝑀 .

It is striking to note that any increment in the spin parameter beyond the Kerr bound 𝑀 ≤ 𝑎 drastically modifies
the structure of ergoregion/ergosurface. In particular, a finite angular cone opens up around the polar axis and
one can get to 𝑟 = 0 through this region, without having passed through the ergoregion. On the other hand,
since the ergoregion around a black hole covers it completely, one must always pass through it when trying to
reach its singularity from the outside.

In a stationary spacetime, observers that remain fixed spatially with respect to infinity are called static Killing
observers [8] and their four-velocities are given as,

𝑢 =
b

√
−b · b

. (4.3.3)

Since 𝑔00 < 0 outside the ergosurface, 𝑢 is time-like only outside it. Observers that move on circular orbits
around the axis of the black hole at fixed angular speeds Ω in planes parallel to the equatorial plane are called
stationary Killing observers and their four-velocities are given by,

𝑢′ =
b ′

√
−b ′ · b ′

. (4.3.4)

Since we will only be interested in timelike stationary observers, we require (b ′ · b ′) < 0, which has the
consequence that Ω− < Ω < Ω+,

Ω± =
−𝑔03 ±

√︃
𝑔2

03 − 𝑔00𝑔33

𝑔33
=

2𝑀𝑎𝑟 sin \ ± 𝜌2
√
Δ

𝐴 sin \
. (4.3.5)

For Δ ≥ 0, we require the radial coordinate to satisfy 𝑟 ≥ 𝑟H, i.e. stationary Killing observers exist only
outside the horizon. Clearly, static observers form the subclass of stationary observers satisfying Ω = 0. Also,
we note that stationary observers with Ω = Ω± are stationary null observers.

The relation between the FW spin-precession frequency experienced by a static Killing observer and the
vorticity of the static Killing congruence, which characterizes the local rotation of nearby world lines in the
congruence, was explored in [151]; remarkably, they found that these two quantities were equal (see [172]
for a nice demonstration of this statement). Moreover, since this congruence is also rigid, the FS frame
associated with static Killing observers of a spacetime acquires the interpretation of being axes-at-rest relative
to asymptotic static Killing observers (‘fixed stars’). Basically, the projection of a connecting null vector of
the static Killing congruence in the FS triad of a static Killing observer is simply a constant vector. This
implies that photons shot out at different times along the same direction relative to the FS frame attached
to a static Killing observer in a stationary spacetime all reach the same asymptotic observer. Therefore, the
legs of such a FS triad are usually called ‘optical axes.’ These axes can be physically constructed by placing
three telescopes pointing towards three (orthogonal) non-planar asymptotic spatially-fixed stars. Therefore,
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(b) Black Hole 𝑎 = .6𝑀; Kerr-Schild coordinates
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(c) Naked Singularity 𝑎 = 1.01𝑀; Boyer-Lindquist coordinates
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(d) Naked Singularity 𝑎 = 1.01𝑀; Kerr-Schild coordinates
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(e) Naked Singularity 𝑎 = 2𝑀; Boyer-Lindquist coordinates
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(f) Naked Singularity 𝑎 = 2𝑀; Kerr-Schild coordinates

Figure 4.1: We show here azimuthal sections of ergoregions for a Kerr black hole and naked singularity in
Boyer-Lindquist coordinates in the left panels, and in Kerr-Schild coordinates in the right panels. The color
coding is as follows: in brown, dashed-gray and dashed-black, we represent the event horizon, outer ergoradius
and inner ergoradius respectively. The black hole ergoregion is defined as being the region between the event
horizon and the outer ergoradius, i.e. 𝑟H ≤ 𝑟 ≤ 𝑟+; the ergosurface is defined to be the hypersurface 𝑟ergo = 𝑟+.
On the other hand, for a Kerr naked singularity, the ergoregion is defined to be the region between the two
ergoradii, i.e. 𝑟− ≤ 𝑟 ≤ 𝑟+, and the ergosurface is defined to be the hypersurface 𝑟ergo = 𝑟±. We have also
shown, in solid-black, a cross-section of the ring singularity in the Kerr-Schild coordinates, which satisfies
𝑥2 + 𝑦2 = 𝑎2𝑀2. This corresponds to 𝑟 = 0, \ = 𝜋/2 in the Boyer-Lindquist coordinates. See for example

[200] for further details.
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measuring the change of the spin vector relative to this triad gives us the change in the spin relative to fixed
asymptotic observers (see for example §II.C of [317]). One can see §2 of [318] for a more general discussion
on the relation between the FW spin-precession frequency along arbitrary time-like observers and the vorticity
of their congruence.

The take-away here is that, in non-static stationary spacetimes, like the Kerr spacetime, the Frenet-Serret
frames associated with the congruence of static Killing observers (4.3.3) play a fundamental role in translating
physical statements made relative to a particular observer’s comoving tetrad frame into the more desirous
statements that are made relative to asymptotically spatially-fixed observers. This is of critical importance
if, for example, one would like to study the frequency at which the magnetic-axis of a pulsar, present in the
vicinity of a Kerr black hole, crosses the line of sight towards earth.

Finally, it is important to note the following. In static spacetimes the spin-precession frequency of static Killing
observers identically vanishes Ωp = 0. This is evident from equation 4.3.16 for static Killing observers (Ω = 0)
in the Schwarzcshild spacetime (𝑎 = 0), or more explicitly for equatorial static Killing observers (\ = 𝜋/2)
see (4.5.6). Also, the congruence of such observers is irrotational. Therefore, if one initially arranged a set
of telescopes to point along three non-planar stars and set atop them three gyroscopes that also pointed along
these stars, the gyroscopes and telescopes would remain aligned at all times. This does not hold true for
non-static stationary spacetimes and the gyroscopes would precess relative to the telescopes.

We have discussed why the class of static Killing observers is of fundamental importance and a study of the
pulse profiles of pulsars moving along such orbits will be presented in §4.6. However, from an astrophysical
standpoint, it would be even more interesting if one could extend this study to a description of the more general
class of stationary Killing observers, and this is discussed in §4.6.6. This class of observers contains within it,
for example, the set of observers that move on time-like equatorial circular geodesics in the Kerr spacetime,
which satisfy,

∇𝑢′𝑢
′ = 0. (4.3.6)

This above condition just imposes a constraint on the allowed orbital angular frequencies, and such observers
move at Kepler frequencies, Ω = ΩK±. The + and − signs are associated with co-rotating and counter-rotating
equatorial Kepler observers and we have,

ΩK± =
𝑀1/2

𝑎𝑀1/2 ± 𝑟3/2 . (4.3.7)

It is important to note that stable timelike co-rotating and counter-rotating Kepler observers exist only outside
the respective innermost stable circular orbits (ISCOs), and the expressions for the ISCO radii can be found in
[117]. See figure 4.2 for how the ISCO radii for co-rotating (𝑟ISCO+) and counter-rotating (𝑟ISCO−) equatorial
Kepler observers vary with change in the spin parameter 𝑎 of the Kerr black hole. As can be seen from the
figure the ISCO for the equatorial co-rotating Kepler observers lies inside the ergoregion (𝑟ISCO+ < 2𝑀) for
𝑎 > 0.943𝑀 (see for example [312]). In this chapter, whenever we consider observers moving on equatorial
circular geodesics, we will exclusively consider only those that are on stable orbits i.e., those that satisfy
𝑟 ≥ 𝑟ISCO± for co-rotating and counter-rotating orbits respectively.

Yet another set of astrophysically important observers are the zero angular momentum observers (ZAMOs).
[117] showed that the frame attached to a ZAMO is a powerful tool in the analysis of physical processes near
astrophysical objects and these are observers whose world-lines are normal to the 𝑡 = const. hypersurfaces.
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Figure 4.2: We plot here in dashed-red, dashed-blue, brown and dashed-gray respectively the radii of the
co-rotating (+) and counter-rotating (-) innermost stable circular orbits (ISCOs) 𝑟ISCO± (outside which Kepler
observers are time-like and hence allowed), the radius of the horizon 𝑟H and the radius of the ergosurface 𝑟+
in the equatorial plane as functions of the spin parameter of the black hole 𝑎, both in units of 𝑀 . It should be

noted that 𝑟ISCO+ lies inside the ergoregion for 𝑎 > 0.943𝑀 (see for example [312]).

They fall within the class of stationary Killing observers and move at angular speeds of,

ΩZ =
Ω+ +Ω−

2
= −𝑔03

𝑔33
=

2𝑀𝑎𝑟
(𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 \

. (4.3.8)

In following sections, we shall parametrize the orbital angular velocity Ω of the pulsar by 𝑞 as [312],

𝑞(Ω) = Ω −Ω−
Ω+ −Ω−

, (4.3.9)

with 0 < 𝑞 < 1. Let us denote the 𝑞-values of static observers, ZAMOs and of co-rotating and counter-rotating
Kepler observers as 𝑞static, 𝑞Z and 𝑞K± respectively. Then,

𝑞static = − Ω−
Ω+ −Ω−

, 𝑞Z = .5, 𝑞K± =
ΩK± −Ω−
Ω+ −Ω−

. (4.3.10)

See figure 4.3 for how 𝑞static and 𝑞K± change with radius for different black hole spin parameters 𝑎 = .1𝑀, .5𝑀
and .9𝑀 denoted in green, black and purple respectively.

4.3.1 The Adapted-Kerr Metric

Following [151], we demonstrate below that stationary Killing observers of the Kerr metric are equivalent to
static Killing observers in the ‘adapted-Kerr metric,’ which is simply the Kerr metric expressed in coordinates
comoving with Kerr stationary Killing observers with a particular orbital angular frequency Ω. We argue
therefore that by studying the properties of the spin-precession frequency experienced by adapted-Kerr static
Killing observers, one can obtain a complete description of spin-precession effects experienced by the full
class of Killing observers of the Kerr spacetime. Another advantage of shifting to the adapted-Kerr spacetime
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Figure 4.3: Here we plot the values of 𝑞static in dotted lines between 𝑟 = 2 − 10𝑀 , in regions of strong
gravitational fields, and 𝑞K± in dashed and solid lines respectively between 𝑟 = 𝑟ISCO± − 10𝑀 . The different
colors represent black hole spin parameters 𝑎 = .1𝑀, .5𝑀 and .9𝑀 in green, black and purple respectively.
The dashed-gray lines correspond to the grid-lines 𝑞 = .1, .3, .5, .7, .9. See figure4.2 for how the ISCO radii
for co-rotating (+) and counter-rotating (-) equatorial Kepler observers 𝑟ISCO± vary with the spin parameter 𝑎.

is that one can obtain the evolution of the line-of-sight to earth in the comoving frame of a stationary Killing
observer easily, as discussed in appendix D.

The relevant change of coordinates from the usual Boyer-Lindquist coordinates 𝑥` to those comoving with a
Kerr stationary Killing observer with an orbital angular speed ofΩ, which we shall call adapted-BL coordinates
𝑥 ¯̀ = (𝑡, 𝑟, \̄, 𝜙) is given by,

d𝑡 = d𝑡, d𝜙 = d𝜙 +Ω d𝑡. (4.3.11)

𝑟, \ are left unchanged and the Kerr metric (4.3.1) now becomes,

d𝑠2 =
[
𝑔00 + 2Ω𝑔03 +Ω2𝑔33

]
d𝑡2 + 2 [𝑔03 +Ω𝑔33] d𝑡𝑑𝜙 + 𝑔33d𝜙2 + 𝑔11d𝑟2 + 𝑔22d\2,

= 𝑔0̄0̄d𝑡2 + 2𝑔0̄3̄d𝑡d𝜙 + 𝑔33d𝜙2 + 𝑔11d𝑟2 + 𝑔22d\2. (4.3.12)

We shall refer to this metric as the adapted-Kerr metric and the Jacobian associated with this coordinate
transformation is,

𝐽
¯̀
a =

d𝑥 ¯̀

d𝑥a
=


1 0 0 0
0 1 0 0
0 0 1 0
−Ω 0 0 1


. (4.3.13)

Under the coordinate transformation, b ′` transforms to b ′ ¯̀ = 𝐽
¯̀
ab

′a so that,

b ′ ¯̀ = (1, 0, 0, 0). (4.3.14)

That is, b ′ = 𝜕
𝜕𝑡

= 𝜕0̄. Therefore, Kerr stationary observers become adapted-Kerr static observers. Also,
Kerr static observers become adapted-Kerr stationary observers, although with the sign of the angular speed
reversed. This is of importance because earth, which will naturally be modelled to be an asymptotic static
Killing observer in the Kerr spacetime, becomes a stationary Killing observer of the adapted-Kerr metric, i.e.,



96 Chapter 4

its four-velocity becomes,
b ¯̀ = (1, 0, 0,−Ω) . (4.3.15)

A corollary of the above discussion is that in the original Boyer-Lindquist coordinates, b ′ became null-like
(b ′ ·b ′ = 0) on the event horizon. Now since we have also b ′ ·b ′ = 𝑔0̄0̄, the coordinate transformation (4.3.11)
maps the event horizon of the Kerr metric onto the ergosurface of the adapted-Kerr metric, as it should.

4.3.2 Accelerations and Spin-Precession Frequencies

As discussed above, the Frenet-Serret generalised curvature invariants and tetrad associated with Kerr Killing
observers can be obtained by treating them as adapted-Kerr static Killing observers (4.3.14), and from [151]
we have,

¯̂2 =
1

4𝑔2
0̄0̄

[
𝑔2

0̄0̄,1

𝑔11
+
𝑔2

0̄0̄,2

𝑔22

]
, (4.3.16)

�̄�2
1 = −

𝑔2
0̄3̄
𝑔11𝑔22

4Δ03

[
𝑔0̄0̄,1
𝑔11

(
𝑔0̄3̄,1
𝑔0̄3̄

− 𝑔0̄0̄,1
𝑔0̄0̄

)
+ 𝑔0̄0̄,2

𝑔22

(
𝑔0̄3̄,2
𝑔0̄3̄

− 𝑔0̄0̄,2
𝑔0̄0̄

)]2[
𝑔2

0̄0̄,1
𝑔22 + 𝑔2

0̄0̄,2
𝑔11

] ,

�̄�2
2 = − 1

4Δ03

[
𝑔0̄0̄,1𝑔0̄3̄,2 − 𝑔0̄0̄,2𝑔0̄3̄,1

]2[
𝑔2

0̄0̄,1
𝑔22 + 𝑔2

0̄0̄,2
𝑔11

] ,

where we have introduced the determinant Δ03 = 𝑔0̄0̄𝑔33 − 𝑔2
0̄3̄

= −Δ sin2 \. Note that Δ03 is the same in both
the BL and adapted-BL coordinate systems. Also, the vectors that form the Frenet-Serret tetrad associated with
adapted-Kerr static Killing observers, written out in terms of the adapted-BL coordinate basis (𝜕0̄, 𝜕1, 𝜕2, 𝜕3̄),
are given as,

𝑒 āˆ̄0
=

(
1

√−𝑔0̄0̄
, 0, 0, 0

)
, (4.3.17)

𝑒 āˆ̄1
=

1
2 ¯̂𝑔0̄0̄

(
0,
𝑔0̄0̄,1√
𝑔11

1
√
𝑔11

,
𝑔0̄0̄,2√
𝑔22

1
√
𝑔22

, 0
)
,

𝑒 āˆ̄2
=

1√︁
𝑔0̄0̄Δ03

(
−𝑔0̄3̄, 0, 0, 𝑔0̄0̄

)
,

𝑒 āˆ̄3
=

1
2 ¯̂𝑔0̄0̄

(
0,
𝑔0̄0̄,2√
𝑔22

1
√
𝑔11

,−
𝑔0̄0̄,1√
𝑔11

1
√
𝑔22

, 0
)
.

The accent choices for the indices are as follows: ā and ˆ̄𝑏 are for objects represented in the adapted-BL
coordinate basis and the FS tetrad associated with adapted-Kerr static Killing observers respectively. Therefore
𝑒 āˆ̄0

represents the components of the time-like leg of the FS frame of an adapted-Kerr static Killing observer
defined relative to the adapted-BL coordinate basis,

𝑒 ˆ̄0 = 𝑒 āˆ̄0
𝑒 ā . (4.3.18)

For conversions between the BL coordinate basis, the adapted-BL coordinate basis, the Kerr static Killing FS
tetrad and the adapted-Kerr static Killing FS tetrad, see appendix A. Also, an alternative derivation of the
above quantities (4.3.16, 4.3.17) via a neat differential geometric approach may be found in [172, 311, 312].
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The spin-precession frequency ®Ωp can then be obtained from equations 4.3.16, 4.3.17 and 4.2.24 as,

®Ωp =

√
Δ

2𝜌2𝑔33

[
1 + 2𝑞(1 − 𝑞)

(2𝑞 − 1)2
1

√
Δ sin \

]−1/2 [
−√𝑔11𝑔33,2

𝜕1√
𝑔11

+ √
𝑔22𝑔33,1

𝜕2√
𝑔22

]
. (4.3.19)

The modulus of the spin-precession frequency Ωp ≡ | ®Ωp | is then given as,

Ωp =

√
Δ

2𝜌2𝑔33

[
1 + 2𝑞(1 − 𝑞)

(2𝑞 − 1)2
1

√
Δ sin \

]−1/2 √︃
𝑔11𝑔

2
33,2 + 𝑔22𝑔

2
33,1. (4.3.20)

Also, of the one-parameter class of coordinate transformations given in equation 4.3.11, the (identity) trans-
formation corresponding to Ω=0 leaves the Kerr metric components unchanged and one can obtain the corre-
sponding FS entities associated with Kerr static Killing observers simply by replacing the barred adapted-Kerr
metric components 𝑔 ¯̀ ā with the (unbarred) Kerr metric components 𝑔`a in the above equations (4.3.16,
4.3.17).

4.4 Features of the Spin-Precession Frequency associated with Arbi-
trary Killing Observers6

Naturally, we are interested in studying how the spin-precession frequency varies with the black hole or naked
singularity parameters 𝐽 and 𝑀 , and with the properties of motion of the test spinning object, characterized by
𝑞, 𝑟 , and \. In fact the focus in [312] was to examine precisely these aspects in order to set up local experiments
to distinguish black holes from naked singularities.

Following [312], we report the expression for the spin-precession frequency for arbitrary Killing observers in
the Kerr spacetime to be given as,

Ωp = 𝜒

√︁
𝐴2Δ cos2 \ + 𝐵2 sin2 \, (4.4.1)

where,

𝜒 =
(𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 \

4𝑞(1 − 𝑞) 𝜌7Δ
, (4.4.2)

𝐴 = 2𝑎𝑀𝑟 − Ω

8
[
8𝑟4 + 8𝑎2𝑟2 + 16𝑎2𝑀𝑟 + 3𝑎4 + 4𝑎2 (2Δ − 𝑎2) cos 2\ + 𝑎4 cos 4\

]
+ 2Ω2𝑎3𝑀𝑟 sin4 \,

𝐵 = 𝑎𝑀 (𝑟2 − 𝑎2 cos2 \) +Ω
[
𝑎4𝑟 cos4 \ + 𝑟2 (𝑟3 − 3𝑀𝑟2 − 𝑎2𝑀 (1 + sin2 \))

+𝑎2 cos2 \ (2𝑟3 − 𝑀𝑟2 + 𝑎2𝑀 (1 + sin2 \))
]
+Ω2𝑎𝑀 sin2 \

[
𝑟2 (3𝑟2 + 𝑎2) + 𝑎2 cos2 \ (𝑟2 − 𝑎2)

]
.

We have not re-expressed Ω in the expressions for 𝐴 and 𝐵 above in terms of 𝑞,Ω± for brevity; see equation
4.3.9 above. Now, immediately it can be seen from these expressions that 𝐴 and 𝐵 are finite valued. Further
𝜒, and therefore Ωp, diverge at 𝜌 = 0 or Δ = 0. Note that 𝑞 = 0, 1 are not allowed values since they correspond
to Killing null observers. Remember that 𝜌 = 0 corresponds to the ring singularity and Δ = 0 to the event
horizon. Therefore, one may expect to be able to locate the event horizon from spin-precession considerations
in the case of a black hole and the naked singularity itself, when horizons are absent.

6Reprinted excerpt with permission from [C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P. S. Joshi, and A. Królak,
Phys. Rev. D 95, 084024 (2017).] Copyright (2019) by the American Physical Society.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084024
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We obtain distinguishing characteristic features specifically in the radial profile of Ωp for both BH and NS
cases, which we will discuss as we proceed. Further, we also obtain features in the radial profile of Ωp

that could help distinguish near-extremal NSs from those with higher spin. We explore the details of such
features and provide a criterion to separate near-extremal NS (1 < 𝑎/𝑀 < 1.1) from those with higher spins
(1.1 ≤ 𝑎/𝑀) in appendix B.

For a BH with 𝑎/𝑀 = 0.9, we can see from the left panels of figure 4.4 that the spin-precession frequency
indeed becomes arbitrarily large close to the horizon for all values of 𝑎/𝑀, 𝑞 and \, except 𝑞 = 0.5. From
panel (a), we can see that for 𝑞 < 0.5 the radial variation of Ωp is monotonic, with no maxima or minima.
However, for 𝑞 > 0.5, a minima starts appearing, which can be seen from panels (e) and this minima is
sharp for \ = 𝜋/2. For observers at the ZAMO frequency, 𝑞 = 0.5, the spin-precession frequency remains
smooth and finite, as can be seen from panel (c), even for gyros orbiting close to the horizon. We note that
the ZAMO frequency exhibits consistently peculiar behaviour which might lead to interesting insights on
exploring further. On the other hand, for a NS with 𝑎/𝑀 = 1.1, as can be seen from the plots on the right in
figure 4.4, the spin-precession frequency does not diverge. It remains finite and regular even as one approaches
𝑟 = 0 for all angles 0 < \ � 900. Near 𝑟 = 0, \ = 900, the spin-precession frequency becomes arbitrarily large
because of the presence of the ring singularity. This is also in stark contrast to the BH case in the present
chapter, for which we obtain a divergence in the spin-precession frequency close to the event horizon, ‘far
away’ from 𝑟 = 0. One also finds that a local minima and a local maxima appear for 𝑞 ≥ 0.5 for some angles,
i.e. there are additional features that might help to ascertain the angular velocity of a stationary observer w.r.t.
the ZAMO frequency. We also note here that it can be seen from the 𝑦-axis scales in the panels (a), (b) and (e),
(f) of figure 4.4 relative to the scales in the other panels that Ωp rises sharply as the angular momentum of the
stationary observer Ω nears its allowed bounding values Ω±. These panels represent 𝑞 = 0.1, 0.9 respectively
for BH and NS.

In figure 4.5, we demonstrate that the features obtained for 𝑎/𝑀 = 0.9 are characteristic to all BHs by plotting
Ωp for other values of 𝑎/𝑀 = 0.2, 0.4, 0.6, 0.8, 1. We show that the spin-precession frequency is finite and
smooth both inside and outside the ergoregion but it diverges near the horizon for all 𝑎/𝑀, 𝑞, 𝑟 and \, except
for 𝑞 = 0.5. Finally, in figure 4.6, we demonstrate that the features obtained for 𝑎/𝑀 = 1.1 are characteristic
of NSs, in general, by considering other values of 𝑎/𝑀 = 1.01, 1.05, 1.09, 2, 5. We have picked these values
at non-uniform intervals anticipating additional features in the plots for near-extremal NSs. We show that
the spin-precession frequency is finite and smooth both inside and outside of the ergoregion, same as the BH
case, but it diverges near the ring singularity for all 𝑎/𝑀, 𝑞, 𝑟 and \. This is different from the BH case, as
we have already mentioned above. Indeed, we also note here that near-extremal NSs appear to have additional
characteristic features which could be used to distinguish them from other generic higher spin NSs, as can be
seen clearly from the panels of this figure, and we explore this observation in the following section.

We relegate a description of our (somewhat unrealistic) local experiments distinguish a Kerr black hole from
a Kerr naked singularity to Chapter 5.

4.5 Equatorial Killing Observers

Now, if gravitomagetic spin-precession modifies the appearance of pulsars present near Kerr compact objects,
and if this modification pops up in pulsar timing data, then one could potentially extract black hole parameters
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(a) BH with 𝑎/𝑀 = 0.9, 𝑞 = 0.1, i.e., Ω < ΩZ.
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(b) NS with 𝑎/𝑀 = 1.1, 𝑞 = 0.1, i.e., Ω < ΩZ.
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(c) BH with 𝑎/𝑀 = 0.9, 𝑞 = 0.5, i.e., Ω = ΩZ.
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(d) NS with 𝑎/𝑀 = 1.1, 𝑞 = 0.5, i.e., Ω = ΩZ.

��� ��� ��� ���

�

�

�

�

	

��

��

�

Ω
� 1.5 2.0 2.5 3.0

0

5

10

15

20

(e) BH with 𝑎/𝑀 = 0.9, 𝑞 = 0.9, i.e., Ω > ΩZ.
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(f) NS with 𝑎/𝑀 = 1.1, 𝑞 = 0.9, i.e., Ω > ΩZ.

Figure 4.4: We have plotted in each panel the modulus of the spin-precession frequency of stationary gyroscopes
Ωp (in 𝑀−1) versus 𝑟 (in 𝑀) around a black hole (left panels) with 𝑎/𝑀 = .9 and a naked singularity (right
panels) with 𝑎/𝑀 = 1.1 for different 𝑞 and \. Each of the rows has a different value of 𝑞, which measures its
angular velocity, and in each panel, \ takes values 100, 500, 900 represented in dotted black, dot-dashed black
and black respectively. For the BH, 𝑟 ranges from the horizon radius (which is at ∼ 1.44, in this case) to 3. For
the NS, the plots begin from 𝑟 = 0 (specifically, the singularity is at 𝑟 = 0 and \ = 900) to 3 and the ergosurface
is at 2 for = 900. It can be seen that there is a much bigger drop in Ωp from 100 to 500 than from 500 to 900.
We have therefore inset plots (left inset for NS panels) for additional \ values (close to the pole) of 50, 200 and
300 in dotted gray, dot-dashed gray and gray along with 100 in dotted black, same as the main panel. Further,
for the NS case, since the singularity is at \ = 900 in these coordinates, as 𝑟 → 0, \ → 900, the frequency
blows up. We have zoomed in on the range of 𝑟 between 0 and 1 and inset (on the right in the NS panels)
the plots for \ = 800, 900 in dashed gray and black to demonstrate how quickly Ωp increases relative to angles

much smaller than 900.
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(c) 𝑞 = 0.1, \ = 900
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(d) 𝑞 = 0.5, \ = 100
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(g) 𝑞 = 0.9, \ = 100
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(i) 𝑞 = 0.9, \ = 900

Figure 4.5: We have plotted here, for black holes, the modulus of the spin-precession frequency Ωp (in 𝑀−1)
vs 𝑟 (in 𝑀) for different 𝑎/𝑀, 𝑞 and \. We have 𝑞 = 0.1, 0.5, 0.9 in the top, middle and bottom rows respectively
and \ = 100, 500, 900 in the left, centre and right columns respectively. In each panel, the line style is gray,
dashed gray, dot-dashed black, dotted black and black for 𝑎/𝑀 = .2, .4, .6, .8, 1 respectively. We have plotted
Ωp for each BH (with different 𝑎/𝑀) between its horizon radius (𝑟+) and 𝑟 = 3. The ergosurface is at 𝑟 = 2
for \ = 900 (bottom row), for reference. This figure clearly demonstrates that for all values of 𝑎/𝑀, 𝑞, \, the
spin-precession frequency Ωp becomes arbitrarily large near the event horizon, in general. As can be seen from
the bottom row, for 𝑞 > 0.5, minimas appear. Specifically, from panel (i), it can be seen that the sharpness of

the minimas increases with 𝑎/𝑀 , with extremal black holes as exceptions.

from such considerations. Further, since of most astrophysical relevance due to gravitational dynamics are
pulsars moving on equatorial circular orbits at constant angular speeds around a Kerr black hole ([117, 319];
also see [320] and references therein), we shall henceforth restrict our discussion to such pulsars. Note that
we will not introduce a subscript to denote that we will be displaying equatorial plane quantities.

If we adopt the usual convention ¯̂ ≥ 0, then clearly 𝑒 ˆ̄1 and 𝑒 ˆ̄3 change signs at ΩK±, outside the horizon
(𝑟H ≤ 𝑟). And with the introduction of 𝜖3̄ (see §3 of [321]),

𝜖3̄ =
−𝑔0̄3̄𝜕0̄ + 𝑔0̄0̄𝜕3̄√︁

𝑔0̄0̄Δ03
, (4.5.1)
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(d) 𝑞 = 0.5, \ = 100
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(f) 𝑞 = 0.5, \ = 900
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(g) 𝑞 = 0.9, \ = 100
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(h) 𝑞 = 0.9, \ = 500
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Figure 4.6: We have plotted here, for naked singularities, the modulus of the spin-precession frequency Ωp
(in 𝑀−1) vs 𝑟 (in 𝑀) for different 𝑎/𝑀, 𝑞 and \. We have 𝑞 = 0.1, 0.5, 0.9 in the top, middle and bottom rows
respectively and \ = 100, 500, 900 in the left, centre and right columns respectively. In each panel, the line style
is gray, dashed gray, dot-dashed gray, dotted black and black for 𝑎/𝑀 = 1.01, 1.05, 1.09, 2, 5 respectively. We
have plotted Ωp for each NS (with different 𝑎/𝑀) between 𝑟 = 0 and 𝑟 = 3. The ergoregion extends upto 𝑟 = 2
for \ = 900 (bottom row), for reference. This figure clearly demonstrates that for all values of 𝑎/𝑀, 𝑞, \, the
spin-precession frequency Ωp becomes arbitrarily large near the ring singularity. Further, the gray lines are all
near-extremal NSs and this figure demonstrates how near-extremal NSs appear to have additional characteristic
features that can be used to distinguish them from NSs with higher angular momentum. Motivated thus, we
explore this distinction in greater detail in appendix B since near-extremal naked singularities are of great

interest from an observational standpoint, if they exist.

we can represent the right-handed FS triad for these observers in the equatorial plane succinctly as,

{
𝑒 ˆ̄1, 𝑒 ˆ̄2, 𝑒 ˆ̄3

}
=


{
− 𝜕1√

𝑔11
, 𝜖3̄,

𝜕2
𝑔22

}
, for Ω− < Ω ≤ ΩK−,{

𝜕1√
𝑔11
, 𝜖3̄,−

𝜕2
𝑔22

}
, for ΩK− < Ω ≤ ΩK+,{

− 𝜕1√
𝑔11
, 𝜖3̄,

𝜕2
𝑔22

}
, for ΩK+ < Ω < Ω+.

(4.5.2)

For a discussion on defining the FS tetrads appropriately in regions where ΩK± are not allowed orbital angular
frequencies, i.e. inside the respective ISCOs, see appendix C.
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Accelerations experienced by these observers is given as,

𝛼′ = ¯̂𝑒 ˆ̄1 =

�������
√
Δ(𝑎2𝑀 − 𝑟3) (Ω −ΩK+) (Ω −ΩK−)

𝑟3
[
1−(𝑟2 + 𝑎2)Ω2− 2𝑀 (𝑎Ω−1)2

𝑟

]
������� 𝑒 ˆ̄1. (4.5.3)

Outside the horizon, the acceleration changes sign at Ω = ΩK±. Physically, this means that the sense of the
centrifugal force reverses at the locations of the Kepler orbits, for which 𝛼′ = 0 [322]. A detailed discussion
on this is presented in appendix C and we partition the regions in the Kerr spacetime where accelerations
(and centrifugal forces) experienced by observers moving on equatorial circular orbits are directed along ±𝜕1

respectively in figure C.1.

Also, since in the equatorial plane �̄�2 = 0 and the spin-precession frequency for these observers is given as,

Ω′
p = − �̄�1𝑒 ˆ̄3, (4.5.4)

�̄�1 =
Ω𝑟3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2

𝑟3
[
1−(𝑟2 + 𝑎2)Ω2− 2𝑀 (𝑎Ω−1)2

𝑟

] ,

it is clear that Ω′
p changes sign at the zeroes of

Ω𝑟3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2 = 0. (4.5.5)

It must be noted that the orbits where the reversal of the spin-precession frequency occurs do not, in general,
coincide with the Kepler orbits where the centrifugal force reverses. For a detailed discussion on the sense
of the spin-precession frequency see appendix C. In figure C.2, we display the regions in the Kerr spacetime
where observers moving on equatorial circular geodesics experience positive and negative spin-precession
frequencies relative to the 𝑒 ˆ̄3 leg of their respective right-handed FS tetrads.

In particular, the spin-precession frequencies experienced by equatorial Kerr static observers Ωp = Ω′
p (Ω = 0)

never changes sign and is given as,

Ωp =
𝑎𝑀

𝑟2 (𝑟 − 2𝑀)
𝜕2√
𝑔22

. (4.5.6)

The spin-precession frequencies experienced by the equatorial ZAMOs are given as,

Ω′
p (Ω = ΩZ) =

𝑎𝑀 (𝑎2 + 3𝑟2)
𝑟2 (𝑟3 + 𝑎2 (𝑟 + 2𝑀))

𝜕2√
𝑔22

. (4.5.7)

Note that the zero angular momentum observers experience spin-precession in the same sense as static
observers. Also, it is interesting that for both co-rotating and counter-rotating equatorial Kepler observers of
the Kerr spacetime, the magnitude of their spin-precession frequencies are independent of the spin-parameter,

|Ω′
p | (Ω = ΩK±) =

𝑀1/2

𝑟3/2 . (4.5.8)

Since this form is reminiscent of pure geodetic spin-precession [150], we think it relevant to mention here that,
as can be seen from equation 4.2.14, when a pulsar moves on an equatorial circular geodesic (𝛼 = 0), its spin
vector is simply parallel transported.
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The eventual analysis presented in §4.7 of this chapter will largely depend on the strength of the spin-precession
frequency, and so in figure 4.7, we discuss the trends in the absolute values of the accelerations ¯̂ and spin-
precession frequencies |�̄�1 | experienced by pulsars that move along equatorial circular orbits around Kerr
black holes, which we define from equations 4.5.3 and 4.5.4 as,

¯̂ =

�������
√
Δ(𝑎2𝑀 − 𝑟3) (Ω −ΩK+) (Ω −ΩK−)

𝑟3
[
1−(𝑟2 + 𝑎2)Ω2− 2𝑀 (𝑎Ω−1)2

𝑟

]
������� , (4.5.9)

|�̄�1 | =

�������Ω𝑟
3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2

𝑟3
[
1−(𝑟2 + 𝑎2)Ω2− 2𝑀 (𝑎Ω−1)2

𝑟

]
������� .

We display these quantities for BHs of mass 𝑀 = 100𝑀⊙ with different spin-parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 ,
at different radii 𝑟 and orbital angular velocities Ω. On an orbit of any particular radius 𝑟, a pulsar can move
at angular speeds Ω− (𝑟) < Ω(𝑟) < Ω+ (𝑟), and we parametrize Ω by its 𝑞-value (4.3.9). We consider pulsars
present in the strong gravitational field regime of the Kerr spacetime, at distances of 𝑟 = 𝑟H−10𝑀 and consider
𝑞 = .1, .3, .5, .7, .9, 𝑞static, 𝑞K±. See equation 4.3.10 for the definitions of 𝑞static, 𝑞K± and figure 4.3 for how
they vary with 𝑎, 𝑟. It is useful to remember that static observers with 𝑞 = 𝑞static and stable Kepler observers
with 𝑞 = 𝑞K± are allowed only outside 𝑟 > 2𝑀 and 𝑟 ≥ 𝑟ISCO± respectively. In Geometrized units (𝒢 = 𝑐 = 1),
𝑟, ¯̂ and �̄�1 scale with the mass of the black hole as 𝑀, 𝑀−1 and 𝑀−1 respectively. Therefore, the larger the
mass of the black hole, larger are the sizes of the orbits and smaller are the accelerations and spin-precession
frequencies associated with these world-lines. The sharp changes at ¯̂ = 0 and |�̄�1 | = 0 are an artefact of
the modulus and actually correspond to a smooth change in the sign of the acceleration or spin-precession
frequency respectively. ¯̂ = 0 occurs at the Kepler orbits and the zeroes of the spin-precession frequency occur
at the solutions of equation 4.5.5. Note that we have displayed ¯̂ and �̄�1 in these plots only for co-rotating and
counter-rotating Kepler observers only outside their respective ISCOs (i.e. for stable Kepler observers). For a
detailed discussion on the reversals of the accelerations and the spin-precession frequencies, see appendix C.
And for a more detailed analysis of the trends in the modulii of the spin-precession frequencies experienced
by pulsars moving on Killing orbits around both Kerr black holes and naked singularities, we direct the reader
to consult [312].

It is also important to note that the 𝑟 coordinate used in all these expressions is the Boyer-Lindquist radial
coordinate. The actual physical radius of the orbit would be given by the Kerr-Schild radial coordinate 𝑟. The
relation between the Kerr-Schild and the BL radial coordinates, in the equatorial plane, is given as (see for
example [200]),

𝑟 =
√︁
𝑟2 + 𝑎2. (4.5.10)

So, for example, the Kerr ergosurface in the equatorial plane is at 𝑟+ = 2𝑀 in the Boyer-Lindquist chart
but at 𝑟+ =

√
4𝑀2 + 𝑎2 in Kerr-Schild coordinates. To not complicate matters, we shall exclusively use the

Boyer-Lindquist radial coordinate 𝑟 until §4.7.

4.6 Effect of Gravitomagnetism on Pulsar Beam Evolution

We shall treat pulsars to be test spinning objects, i.e. as small but extended ‘pole-dipole’ test particles (see
for example [308]). For the test spinning object approximation to hold, the primary requirement is that the
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Figure 4.7: We show here the absolute values of the accelerations and spin-precession frequencies ¯̂ and
|�̄�1 | experienced by observers moving on equatorial circular orbits at different Boyer-Lindquist orbital radii 𝑟,
around Kerr black holes with specific angular momenta 𝑎 = .1𝑀, .5𝑀, .9𝑀 . Such observers have restrictions
on the values of allowed angular velocities at any given 𝑟, i.e. Ω− < Ω < Ω+. We parametrize Ω using
0 < 𝑞 < 1 as Ω = 𝑞Ω+ + (1 − 𝑞)Ω−, and plot here 𝑞 = .1, .3, .5, .7, .9 in green, magenta, dashed-black, orange
and purple respectively. In particular, 𝑞 = .5 corresponds to the zero angular momentum observer (ZAMO).
Gray represents Kerr static Killing observers withΩ = 0 and red and blue represent non-accelerating co-rotating
(+) and counter-rotating (-) Kepler observers, Ω = ΩK± respectively. The vertical dashed-red, dashed-blue,
dashed-gray and brown lines indicate the location of the innermost stable circular orbits for co-rotating and
counter-rotating observers 𝑟ISCO±, the ergoradius in the equatorial plane 𝑟+ (\ = 𝜋/2) and the location of the
horizon 𝑟H respectively. In Geometrized units (𝐺 = 𝑐 = 1), 𝑟, ¯̂ and �̄�1 scale with the mass of the black hole
as 𝑀, 𝑀−1 and 𝑀−1 respectively. Therefore, the larger the mass of the black hole, larger are the sizes of the
orbits and smaller are the accelerations and spin-precession frequencies associated with these world-lines. In
the above plots, 𝑟 runs from the location of the horizon 𝑟H to 10𝑀 . The conversion to physical units for 𝑟 is
1𝑀⊙ = 1.5 km, ¯̂ is 1/𝑀⊙ = 6.0 × 1010 km/s2 and �̄�1 is 1/𝑀⊙ = 1.3 × 105 rad/s. Also, in panel (a) the gray
line, corresponding to the Kerr static observer, lies very close to the dashed-black line, corresponding to the

ZAMO. This can be cross-checked from figure 4.3 from which it is evident that 𝑞static ≈ .5 in this case.
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background gravitational field due to the black hole must not vary much over the spatial size of the pulsar.
That is, for a pulsar of mass and radius 𝑚𝑝 , 𝑅𝑝 present in the vicinity of a Kerr black hole whose mass and
angular momentum are 𝑀, 𝐽, and for a radial separation between their centre of masses given by 𝑟, when
𝑚𝑝≪ 𝑀< 𝑟 and 𝑅𝑝≪𝑟, the interaction of the pulsar’s spin quadrupole moment with inhomogeneities of the
gravitational field can be neglected [138], it can be treated as such a test spinning object. The dynamics of the
pulsar which is governed by the conservation equation,

∇`𝑇
`a = 0, (4.6.1)

is then dominated by the two lowest 𝑇 `a-moments, namely its monopole 𝑝` and its dipole 𝑆`a , which are its
four-momentum and intrinsic spin-angular momentum tensor respectively [308]. Once one chooses the Pirani
condition (4.2.10), one can associate with the dipole tensor an intrinsic spin-angular momentum four-vector
S` and subsequently an intrinsic spin angular momentum three-vector 𝑆`, which we introduced in §4.2. As
mentioned before, we ignore the spin-curvature coupling in this work and calculations incorporating this effect
will be reported elsewhere. Therefore, the equation of motion for the spin angular momentum reduces to the
by Fermi-Walker transport law given in equation 4.2.13; see for example [316].

All calculations henceforth will be performed in orthonormal right-handed Euclidean Frenet-Serret spatial
triads, which for a Kerr static Killing observer (Ω = 0) is given as (see equation 4.5.2),{

𝜕1√
𝑔11

,
𝑔00𝜕3 − 𝑔03𝜕0√︁

𝑔00Δ03
,
−𝜕2√
𝑔22

}
. (4.6.2)

Therefore, we can switch to the Euclidean three-vector notation and the FS frame written out above (4.6.2) will
be denoted by {𝑒1, 𝑒2, 𝑒3}. That is, for a vector 𝑎 = 𝑎𝑖𝑒𝑖 defined in the FS frame, we will use ®𝑎 = (𝑎1, 𝑎2, 𝑎3),
and for a unit vector, we will use �̂�. In §4.6.6, we will generalize our calculations to describe the full class of
equatorial Kerr stationary Killing observers.

The world-line of a pulsar that remains at a fixed spatial location, or that moves at very low orbital angular
velocities Ω ≈ 0, over the period of observation can be approximated to be a static Killing orbit with four-
velocity given in equation 4.3.3. For such a pulsar, let us denote the instantaneous unit vector along which the
spin-axis (or the intrinsic spin angular momentum) lies by 𝑆(𝜏). In this notation, we can now rewrite the time
dependence of the spin-axis 𝑆 that arises from the spin-precession due to its coupling with the gravitomagnetic
field of the Kerr black hole (4.2.25) as,

¤̂
𝑆 = −𝜎1𝑆 × 𝑒3,

where the ¤ represents a derivative with respect to the proper time 𝜏 in the pulsar’s comoving FS frame and
𝜎1 = �̄�1 (Ω = 0) (see equation 4.5.4). Therefore, 𝑆 moves on a cone of half-opening angle 𝛽 around the
precession-axis 𝑒3 at the spin-precession frequency −𝜎1.

Now, if we represent by �̂� and 𝜔 the instantaneous direction along which the pulsar’s beam of radiation points
and the (fixed) angular frequency at which the pulsar spins about its spin-axis, then the beam vector �̂� just
moves on the surface of a cone with axis 𝑆 and half-opening angle 𝛼 (not to be confused with the acceleration
four-vector), at an angular speed of 𝜔. See figure 4.8 for the geometry of the various vectors involved. The
requisite equations of motion in the Euclidean Frenet-Serret frame are the following set of coupled first order
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differential equations,

¤̂
𝑆 = −𝜎1𝑆 × 𝑒3, (4.6.3)
¤̂𝐵 = 𝜔�̂� × 𝑆, (4.6.4)

4.6.1 Earth Line of Sight in the Frenet-Serret Triads of Kerr and adapted-Kerr Static
Observers

As previously argued in §4.3, the FS triad associated with Kerr static Killing observers can be interpreted as
axes-at-rest relative to asymptotic fixed observers. Hence, the projection of the tangent to the null-geodesic
connecting the pulsar’s spatial location to an arbitrary asymptotic fixed observer’s position, like earth (when
it is causally connected with the pulsar), onto this FS triad always remains a constant, and we can write,

𝑛𝑖 = (sin \E cos 𝜙E, sin \E sin 𝜙E, cos \E) , (4.6.5)

For simplicity, we set 𝜙E = 0,
𝑛𝑖E = (sin \E, 0, cos \E) . (4.6.6)

Further, in the FS triad of an equatorial adapted-Kerr static Killing observer, we can write (see appendix D),

𝑛
ˆ̄𝑗
E (𝜏) =

(
cos (Ω𝜏) sin \̄E,∓ sin (Ω𝜏) sin \̄E, cos \̄E

)
, (4.6.7)

where the upper (-) and lower (+) signs apply to observers whose Frenet-Serret trinormal leg 𝑒 ˆ̄3 points along
and opposite to the 𝑧-axis (or direction the black hole spin), denoted by 𝑧 respectively. That is the signs ∓
correspond to the cases (see equation 4.3.17 and also the discussion in appendix D),

𝑒 ˆ̄3 = ±𝑧 = ∓ 𝜕2√
𝑔22

. (4.6.8)

Therefore, we can represent the apparent direction along which earth lies �̂�E as (cf. 4.6.6),

�̂�E = (sin \E, 0, cos \E). (4.6.9)

We are interested in finding the frequency at which �̂� points along the apparent direction of earth, �̂�E, first in
the FS frame and eventually in earth’s frame. At every time 𝜏 such that �̂�(𝜏) = �̂�E, a pulse is seen on earth.
This corresponds to the frequency at which the deflection vector ®Z vanishes,

®Z (𝜏) = �̂�(𝜏) − �̂�E. (4.6.10)

If the frequency at which Z goes to zero is given by aFS, then we can use the red-shift formula to find the
observed pulse frequency on earth aE as (see for example [8]),

1 + 𝑧 = d𝜏
d𝑡

=
aE

aFS
=

[
−𝑔00

(
𝑟,
𝜋

2

)]−1/2
, (4.6.11)

where 𝑡 is the coordinate time measured by an asymptotic static observer, like an astronomer on earth.



Chapter 4 107

Figure 4.8: If a pulsar that remains spatially fixed, or moves at small orbital angular velocities Ω ≈ 0 in
the equatorial plane of a Kerr black hole, its spin axis 𝑆 precesses around a precession axis 𝑒3, at the spin-
precession frequency 𝜎1, in the clockwise sense. Here 𝛽 denotes the angle between these axes. Further, the
direction in which the beam is emitted �̂� rotates around this time-varying spin axis 𝑆(𝜏) at the intrinsic spin
angular frequency of the pulsar +𝜔 (in the counter-clockwise sense: a convention), with 𝛼 = ∠(�̂�, 𝑆) remaining

constant. Earth lies along �̂�E, with \𝐸 = ∠(�̂�E, 𝑒3), also a constant.

4.6.2 Initial Conditions

We shall suppose that the apparent direction (direction cosines) of the Earth is given as (cf. 4.6.6),

�̂�E = (sin \E, 0, cos \E) . (4.6.12)

Let us use the initial condition that at time 𝜏 = 0, a pulse is received on earth, i.e. �̂� points along the apparent
direction of earth,

�̂�0 = �̂�(𝜏 = 0) = (sin \E, 0, cos \E) . (4.6.13)

Since 𝑆 moves on a cone of half-angle 𝛽 around 𝑒3, the most general initial condition that we can write is,

𝑆0 = (sin 𝛽 cos𝜓, sin 𝛽 sin𝜓, cos 𝛽). (4.6.14)

Now, since �̂� moves on a cone of half-angle 𝛼 around 𝑆(𝜏), we require that the following be satisfied,

�̂�0 ·𝑆0 = cos𝛼. (4.6.15)

Let us note here that 𝛼, 𝛽, \𝐸 are fixed by the geometric configuration of the system. 𝜓 however is simply
an initial phase for 𝑆0, which we are free to choose thereby exhausting all freedom in initial conditions. The
above equation imposes the following constraint,

cos𝛼 = sin \𝐸 sin 𝛽 cos𝜓 + cos \𝐸 cos 𝛽. (4.6.16)

4.6.3 Solution for the Spin and Beam Vectors

One can simply obtain the solution 𝑆(𝜏) to the spin-equation of motion (4.6.3) by using Rodrigues’ rotation
formula (see for example [323]) as,

𝑆 = (sin 𝛽 cos (𝜓 + 𝜎1𝜏), sin 𝛽 sin (𝜓 + 𝜎1𝜏), cos 𝛽). (4.6.17)
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It can be checked that 𝑆(𝜏 = 0) satisfies the initial conditions given in equation 4.6.14. The solution for the
beam vector that satisfies the relevant equation of motion (4.6.4) and the initial condition (4.6.13) is then given
as (see appendix E for an analytic derivation),

𝐵1=𝐷1 [cos (𝜔eff𝜏) cos (𝜓+𝜎1𝜏) cos 𝜒+sin (𝜔eff𝜏) sin (𝜓+𝜎1𝜏)]

+𝐷2 [sin (𝜔eff𝜏) cos (𝜓+𝜎1𝜏) cos 𝜒−cos (𝜔eff𝜏) sin (𝜓+𝜎1𝜏)]

+𝐷3 cos (𝜓+𝜎1𝜏) sin 𝜒, (4.6.18)

𝐵2=𝐷1 [cos (𝜔eff𝜏) sin (𝜓+𝜎1𝜏) cos 𝜒−sin (𝜔eff𝜏) cos (𝜓+𝜎1𝜏)]

+𝐷2 [sin (𝜔eff𝜏) sin (𝜓+𝜎1𝜏) cos 𝜒+cos (𝜔eff𝜏) cos (𝜓+𝜎1𝜏)] ,

+𝐷3 sin (𝜓+𝜎1𝜏) sin 𝜒

𝐵3= − sin 𝜒 [𝐷1 cos (𝜔eff𝜏)+𝐷2 sin (𝜔eff𝜏)]+𝐷3 cos 𝜒,

where

𝐷1 = sin \𝐸 cos 𝜒 cos𝜓 − cos \𝐸 sin 𝜒, (4.6.19)

𝐷2 = − sin \𝐸 sin𝜓,

𝐷3 = cos \𝐸 cos 𝜒 + sin \𝐸 sin 𝜒 cos𝜓.

Also we have introduced,

𝜔2
eff = 𝜔2 + 𝜎2

1 + 2𝜔𝜎1 cos 𝛽, (4.6.20)

𝜒 = sin−1
(
𝜔

𝜔eff
sin 𝛽

)
. (4.6.21)

Now, let us pick the initial phase for 𝑆0, without loss of generality, to be 𝜓 = 0. From equation 4.6.16, it is
clear that one obtains pulses only for specific geometric configurations, \𝐸 = ±𝛼 + 𝛽. Also,

𝐷1 = sin (\𝐸 − 𝜒), (4.6.22)

𝐷2 = 0,

𝐷3 = cos (\𝐸 − 𝜒),

Then the deflection vector is given by,

Z1=cos (𝜎1𝜏) [cos (𝜔eff𝜏) sin (\𝐸−𝜒) cos 𝜒+cos (\𝐸−𝜒) sin 𝜒]

+sin (𝜎1𝜏) sin (𝜔eff𝜏) sin (\𝐸−𝜒) − sin \𝐸 , (4.6.23)

Z2=−cos (𝜎1𝜏) sin (𝜔eff𝜏) sin (\𝐸−𝜒)

+ sin (𝜎1𝜏) [cos (𝜔eff𝜏) sin (\𝐸−𝜒) cos 𝜒+cos (\𝐸−𝜒) sin 𝜒] ,

Z3=−cos (𝜔eff𝜏) sin (\𝐸−𝜒) sin 𝜒+cos (\𝐸−𝜒) cos 𝜒 − cos \𝐸 .

The components of ®Z are, in general, almost periodic functions of 𝜏 [324, 325]. That is, ®Z approaches zero
arbitrary closely but ®Z does not necessarily vanish periodically, or even vanish exactly at all. This is clear
immediately if one remembers that 𝜎1 and 𝜔 (and therefore 𝜔eff) are in general incommensurate frequencies.
When 𝜎1, 𝜔eff are rational multiples of each other, ®Z is exactly periodic and one obtains pulses indeed, at the
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lowest common multiple (LCM) of these frequencies.

One can immediately anticipate implications for the existence of sub-millisecond pulsars. That is, ordinary
garden variety pulsars could appear to pulse at faster (sub-millisecond) rates when in the vicinity of a Kerr black
hole, due to gravitomagnetic spin-precession. Further, one could possibly explain quasi-periodic oscillations
(QPOs) in pulsar observations, pulsar nulling and multi-peaked pulsar frequency profiles by accounting for
the presence of a Kerr black hole in the vicinity of the pulsar.

Let us remember that the analysis thus far has been conducted entirely at the location of the pulsar, in its
comoving FS frame. To obtain the relation between differences in times measured in the pulsar frame d𝜏 and
on earth d𝑡, as mentioned before we assume that the earth is at asymptotic infinity, and use the gravitational
redshift to write,

d𝑡
d𝜏

=

[
−𝑔𝑡𝑡

(
𝑟,
𝜋

2

)]−1/2
. (4.6.24)

In particular when when ®Z is periodic i.e., when the ratio of 𝜔eff and 𝜎1 is rational, the zeroes of ®Z will occur
at the LCM of these two frequencies. If we denote this frequency as aFS, then the frequency at which pulses
are observed on earth a can be obtained as,

aE =

(
1 − 2𝑀

𝑟

)1/2
aFS. (4.6.25)

4.6.4 Non-Zero Beam Width

Furthermore, since the beam width is not exactly of zero measure, pulses will still be recorded on earth when
𝜎1, 𝜔eff are not exact rational multiples of each other. More concretely, let us suppose that the beam has some
finite size and model it here as a cone of half-opening angle `. Then if �̂�E lies anywhere within this cone, i.e.
when ∠(�̂�, �̂�E) ≤ ` or equivalently whenever,

| ®Z |2 ≤ 4 sin2 (`/2), (4.6.26)

one ‘sees the pulsar.’ This is particularly important to take into account since we now have access to a
continuous pulse profile whenever the above condition is satisfied, as opposed to a far lesser amount of
information corresponding to just the information of when a pulse was observed in our earlier consideration
of zero beam width, ` = 0.

In the case of an isolated pulsar, the Fourier spectrum of its pulse profile will effectively contain only one
peak, corresponding to its intrinsic spin frequency 𝜔. In stark contrast, Fourier spectra corresponding to
observations of pulsars present in strong gravitational fields like near the ergosurface of a Kerr black hole or
naked singularity will be multiply peaked and will contain information regarding the relevant frequencies in
the problem, 𝜎1, 𝜔eff, and also regarding other geometry parameters like 𝛽, \E. And from this spectrum, one
can potentially extract black hole parameters 𝑎, 𝑀 .

The aim of the present work is just to point out that it is possible from measurements of pulsar spin-precession
to extract information regarding black hole parameters but we do not attempt a detailed analysis of the ‘inverse
problem’ here, namely what the shape of the pulse profile is as seen in earth’s frame etc. However, it is clear
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that if we define in the pulsar frame, two sets of times 𝜏on,𝑖 , 𝜏off, 𝑗 as follows,

|Z2 | (𝜏on,𝑖) = |Z2 | (𝜏off, 𝑗 ) = 4 sin2 (`/2), (4.6.27)

d|Z2 | (𝜏on,𝑖)
d𝜏

< 0,
d|Z2 | (𝜏off, 𝑗 )

d𝜏
> 0,

then one sees the pulsar for the duration Δ𝜏𝑖 = 𝜏off,𝑖 − 𝜏on,𝑖 . In the above, we have used the same index 𝑖 to
denote that these are consecutive on and off times that satisfy equation 4.6.27. Note that Δ𝜏𝑖 are in general
not of the same length. The amount of time for which the pulsar is visible is captured by the set Δ𝜏𝑖 and
how frequently it is visible is indicated by the set 𝜏on,𝑖 , and these quantities depend on black hole parameters.
Finally, one can obtain the relevant times and time differences in earth’s frame via a simple redshift calculation.

4.6.5 Kerr Static Pulsars: Approach to the Ergosurface

Very slowly moving pulsars can be modelled as test spinning objects that move along Kerr static Killing
orbits. In particular, when such pulsars are close to the ergosurface 𝑟 → 𝑟+, the spin-precession frequency
they experience becomes unboundedly large 𝜎1 → ∞ and in this limit, we have 𝜒 ≈ 0 and 𝜔eff ≈ 𝜎1. In this
extreme case, the deflection vector just becomes periodic and the pulse frequency of such a pulsar, measured
in the FS frame, locks onto the spin-precession frequency, i.e.,

lim
𝑟→𝑟+

aFS =
𝜎1

2𝜋
. (4.6.28)

If we introduce a dimensionless parameter 𝛿 = 𝑟
2𝑀 −1, which measures the radial distance from the ergosurface

in the equatorial plane, then in this limit, the redshift goes as 1 + 𝑧 ≈ 𝛿1/2, the spin-precession frequency goes
as 𝜎1 ≈ 𝑎

8𝑀2
1

𝛿 (1+𝛿)2 and we find that the observed pulse frequency on earth aE behaves as,

aE ≈ 𝑎

8𝜋𝑀2
1
𝛿1/2 . (4.6.29)

If the pulsar is present in this region, one obtains pulses on the Earth far more rapidly than an isolated pulsar,
i.e., aE ≫ 𝜔/2𝜋. Specifically, in the limit 𝛿 → 0, we obtain a → ∞, i.e., the pulses disappear and we see a
rather continuous beam from the earth. This is somewhat reminiscent of the chirp one sees in a gravitational
wave calculation [135].

Finally, we would like to note that even if for a short proper time a pulsar moves on a circular orbit with a
small orbital angular velocity Ω ≈ 0 near the ergosurface of a Kerr black hole (or even a naked singularity),
and is observed on earth, then since they experience nearly vanishing geodetic spin-precession, measurements
from such pulsars could allow us to pick out pure gravitomagnetic effects in the Kerr spacetime. This could
potentially lead to an independent estimate of the spin parameter of the central Kerr black hole.

4.6.6 Pulsar Spin-Precession: Kerr Stationary Observers

We had discussed the equivalence between Kerr stationary and adapted-Kerr static observers in §4.3.1 and our
analysis of the evolution of the beam vector of a pulsar moving along the integral curve of a Kerr static observer
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presented in this section thus far can now be immediately extended to study the case of pulsars moving on
Kerr stationary Killing orbits.

In terms of the spin-precession frequency experienced by an adapted-Kerr static observer measured relative
to its Frenet-Serret tetrad Ω′

p which is given as,

Ω′
p = − �̄�1𝑒 ˆ̄3, (4.6.30)

�̄�1 =
Ω𝑟3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2

𝑟3
[
1−(𝑟2 + 𝑎2)Ω2− 2𝑀 (𝑎Ω−1)2

𝑟

] ,

we introduce,

�̄�eff =

√︃
𝜔2 + �̄�2

1 + 2𝜔�̄�1 cos 𝛽, and (4.6.31)

�̄� = sin−1
(
𝜔

�̄�eff
sin 𝛽

)
,

and proceed to directly write out the expressions for the deflection vector ®̄Z as,

Z̄1=cos (�̄�1𝜏)
[
cos (�̄�eff𝜏) sin (\̄E− �̄�) cos �̄�+cos (\̄E− �̄�) sin �̄�

]
+sin (�̄�1𝜏) sin (�̄�eff𝜏) sin (\̄E− �̄�) − cos (Ω𝜏) sin \̄E, (4.6.32)

Z̄2= − cos (�̄�1𝜏) sin (�̄�eff𝜏) sin (\̄E− �̄�) ± sin (Ω𝜏) sin \̄E

+ sin (�̄�1𝜏)
[
cos (�̄�eff𝜏) sin (\̄E− �̄�) cos �̄�+cos (\̄E− �̄�) sin �̄�

]
Z̄3= − cos (�̄�eff𝜏) sin (\̄E− �̄�) sin �̄�+cos (\̄E− �̄�) cos �̄� − cos \̄E.

where we used the important fact that earth lies along 𝑛
ˆ̄𝑗
E in the adapted-Kerr static Killing FS spatial-triad

(4.6.7) or equivalently in the Euclidean notation along,

ˆ̄𝑛E (𝜏) =
(
cos (Ω𝜏) sin \̄E,∓ sin (Ω𝜏) sin \̄E, cos \̄E

)
. (4.6.33)

In the above equations (4.6.32, 4.6.33), the signs correspond to the signs of 𝑒 ˆ̄3 relative to the direction of the
spin of the black hole 𝑧 (4.6.8).

The Fourier transform of this beam signal will contain information regarding various combinations of all three
frequencies in the problem now, Ω, �̄�1, �̄�eff, from which one can extract necessary data to potentially solve
the inverse problem and obtain black hole parameters namely 𝑎, 𝑀 , as well as the orbital frequency of the
pulsar Ω. We do not attempt a detailed analysis of the trends of the Fourier transforms here but in §4.7, we
argue that the spin-precession frequencies in various realistic scenarios become comparable to the intrinsic
spin period of the pulsar and hence these effects must be taken into account when analysing pulsar profiles of
pulsars present near rotating compact objects. The redshift relations for these observers can be found in [326],
for example.

Lastly, for pulsars moving on circular orbits close to the event horizon of a Kerr black hole, i.e. for 𝑟 → 𝑟H

we have, �̄�1 → ∞ and Ω → ΩH, where we have defined the horizon frequency as,

ΩH ≡ lim
𝑟→𝑟H

Ω+ = lim
𝑟→𝑟H

Ω− =
𝑎

2𝑀𝑟H
. (4.6.34)
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Figure 4.9: Here we highlight the difference in the useful Boyer-Lindquist (BL) coordinate 𝑟 and the physical
Kerr-Schild coordinate 𝑟 in the equatorial plane of the Kerr spacetime, by displaying the variation of 𝑟/𝑟 − 1
with change in 𝑎 and 𝑟 . Therefore, this roughly measures the distortion from spherical symmetry, and we show
here that these coordinates agree well for larger distances 𝑟 and smaller central spins 𝑎. Also, since this is
a fractional quantity, evidently these qualitative features are representative of black holes (0 ≤ 𝑎 ≤ 𝑀) and
naked singularities (𝑀 < 𝑎), independently of their masses. In particular, if we consider a pulsar at 𝑟 = 2.1𝑀
near a BH with spin 𝑎 = .1𝑀 and one with 𝑎 = 𝑀 , the corresponding physical distances would be 𝑟 ≈ 𝑀 and
𝑟 ≈ 1.1× 2.1𝑀 respectively. Clearly, for larger central masses, this difference in measurement of distances can
be significant (1𝑀⊙ = 1.5 km). Note that 𝑟+ = 2𝑀 is the location of the ergosurface (BL), and is independent

of the central spin.

In this limit, �̄� ≈ 0 and �̄�eff ≈ 𝜎1, and in this extreme case, the deflection vector just becomes,

Z̄1 ≈ [1 − cos (ΩH𝜏)] sin \̄E, (4.6.35)

Z̄2 ≈ ± sin (ΩH𝜏) sin \̄E,

Z̄3 ≈0.

That is, for pulsars very close to the event horizon of a Kerr black hole, one obtains pulses on earth every
aFS ≈ ΩH/2𝜋.

4.7 Analysis and Results

In the remainder of this article, we will switch from Geometrized units (𝐺 =𝑐=1) to physical units, and keep
only two significant digits when reporting values of physical quantities. The conversions for distances, angular
frequencies, and accelerations are given as: 1𝑀⊙ = 1.5 km, 1𝑀−1

⊙ = 1.3 × 106 rad/s and 1𝑀−1
⊙ = 6.0 × 1010

km/𝑠2 respectively. Also, we will freely use both the convenient Boyer-Lindquist 𝑟 and the more physical
Cartesian Kerr-Schild 𝑟 radial coordinates (see equation 4.5.10). Therefore, we find it useful to mention here
that the fractional change in the distances measured in these coordinate systems, 𝑟/𝑟 − 1, decreases with
distance from and increases with spin of the central Kerr object, as is evident from figure 4.9.
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Firstly, let us note that for an isolated pulsar (𝜎1 = 0) at rest (Ω = 0), we can write the deflection vector from
(4.6.23) as,

Z1 =(cos (𝜔𝜏) − 1) sin (\𝐸 − 𝛽) cos 𝛽,

Z2 = − sin (𝜔𝜏) sin (\𝐸 − 𝛽), (4.7.1)

Z3 =(1 − cos (𝜔𝜏)) sin (\𝐸 − 𝛽) sin 𝛽.

Clearly, the Fourier spectrum of the squared modulus of the deflection vector |Z2 (𝜏) | for such a pulsar has a
single peak corresponding to its intrinsic spin angular frequency𝜔. On the other hand, the Fourier spectrum of
|Z2 (𝜏) | for a pulsar near a Kerr black hole is multiply peaked, with these peaks correspond to the magnitudes of
its orbital angular velocity Ω, its spin-precession frequency �̄�1 and the effective vector sum of the intrinsic spin
angular frequency (𝜔) and the spin-precession frequency, denoted by 𝜔eff. Of course, this spectrum contains
other peaks corresponding to certain sums and differences of these three frequencies. However, for qualitative
insight into how gravitomagnetic spin-precession (spin-spin coupling) and orbital motion (spin-orbit coupling)
affect pulsar timing, it is useful to consider the following ratios,

𝑓p =
|�̄�1 |
𝜔
, 𝑓o =

Ω

𝜔
, (4.7.2)

and we can capture the role of 𝜔eff on pulsar timing measurements, using 𝑓p and 𝛽, via,

𝜔eff

𝜔
=

√︃
1 + 𝑓 2

p ± 2 𝑓p cos 𝛽. (4.7.3)

Now, since the spin-precession (4.5.4) and orbital angular frequencies (4.3.5) typically decrease with an
increase in size of pulsar orbit 𝑟, it makes sense to analyse pulsar-BH binaries depending on their sizes.
Therefore, we can broadly divide these systems into two categories: (a) when a pulsar is present sufficiently
close to the BH such that the relevant ratios 𝑓p (𝑟) and 𝑓o (𝑟) are comparable to, or much larger than unity,
then gravitomagnetic spin-precession effects modify the pulse profile on the time-scale of the pulsar’s intrinsic
spin period; and (b) when a pulsar is sufficiently far away such that these ratios are much smaller than unity,
one finds longer-time-scale variations in the pulse profile (for example, as secular shifts in the times of arrival
of pulses). To best demonstrate these points, we will now consider figures 4.10 and 4.11, and table 4.12.
In figure 4.10, we consider the all-important case of pulsars moving on stable equatorial circular geodesics
around IMBHs of mass 102𝑀⊙ and SMBHs of mass 105𝑀⊙ (similar to the BHs of the Seyferts in the study
of [327]), and analyse how gravitomagnetic spin-precession effects modify the times of arrival of pulses. In
figure 4.11, the focus will be on the strength of the spin-precession frequency (in physical units) relative to the
intrinsic spin-frequency of typical pulsars, to understand which effect dominates the beam evolution, with (a)
increase in distance between the pulsar and BH, (b) change in the orbital angular velocity of the pulsar, and
(c) with change in mass and spin of the BH. We conclude the present analysis with an exhaustive catalogue of
the possible orbital angular velocities, accelerations and spin-precession frequencies experienced by pulsars
present at varying distances near intermediate-mass Kerr BHs of varying spins 𝑎 = .1𝑀, .5𝑀, .9𝑀 but of
same mass 102𝑀⊙ .

Now, we show in figure 4.10 the time plots of the squared-modulus of the deflection vector |Z2 (𝜏) | for pulsars
moving on (stable) equatorial circular Kepler orbits with Ω = ΩK+ near intermediate-mass (102𝑀⊙) and
supermassive (105𝑀⊙) Kerr BHs (in blue), contrasted against |Z2 (𝜏) | for isolated pulsars (in red), for different
values of the spin for the BH 𝑎, spin-frequencies of the pulsar 𝜔 (corresponding to normal pulsars which
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have 𝜔 = 2𝜋 rad/s, and ms-pulsars for which 𝜔 = 200𝜋 rad/s) moving on assorted values of orbit radii 𝑟 .
As discussed in §4.6.4, when |Z2 (𝜏) | ≈ 0, one obtains a pulse on earth. Therefore, the period at which
this quantity vanishes corresponds to period of the pulsar as seen on earth, once redshift is accounted for.
From this figure, it is evident that as the BH mass increases, the spin-precession frequency drops, and this is
directly manifest in the |Z2 | profile. A similar statement holds also for increase in distance between pulsar
and black hole. Now, when 𝑓p, 𝑓o ≳ 1 - see for example panels (a) and (c) - gravitomagnetic spin-precession
(significantly) modifies the observed pulse period on the dynamical time-scale itself (which is determined by
the spin-period of the pulsar 2𝜋/𝜔). Further, even when spin-precession effects are not as strong (panels b, d,
e), we still see significant modifications in the pulse period albeit on time-scales larger than the spin-period of
the pulsar. These findings indicate that when modelling pulse profiles of pulsars near BHs, one must account
for gravitomagnetic spin-precession effects, even if the pulsar is not ‘very close’ to the BH. Finally, when
spin-precession effects are very small ( 𝑓p, 𝑓o ≪ 1), as in panel (f), then pulses appear to arrive at 2𝜋/𝜔.
However, the gravitomagnetic spin-precession effects due to the companion BH are imprinted onto the shape
of the pulse. What these results imply are that if one were to find pulsars moving on astrophysically relevant
(equatorial stable circular Kepler) orbits in a reasonably large radial-band around a BH, one can obtain an
independent estimate of BH parameters by looking for effects of gravitomagnetic spin-precession. For an idea
of how far away a pulsar must be from a BH to neglect spin-precession effects, see figure 4.11 and also glance
at table 4.12.

Now, in figure 4.11, we present a systematic study of how log 𝑓p varies with changes in the mass 𝑀 and spin 𝑎
of the BH, the distance of the pulsar from it 𝑟 , the orbital angular frequency of the pulsarΩ and the intrinsic spin
frequency of the pulsar𝜔. The contour log 𝑓p ≈ 0 divides the 𝑎−𝑟 parameter space into the ‘strong-precession
effects’ region ( 𝑓p ≳ 1) and the weak-precession effects region (1> 𝑓p ≳ 10−4), as discussed above. Now, for
pulsars with small spins around IMBHs (top row), the strong- and weak-precession region can be identified
roughly (in Kerr-Schild coordinates) as being upto about ≈1.3 × 103 km and ≈4.9 × 103 km respectively. For
pulsars with high spins around BHs of similar masses (middle row), these regions correspond to distances of
≈3.×103 and ≈1.1×103 km respectively. Finally, for pulsars with small spins around SMBHs (bottom row),
spin-precession effects are severely suppressed since they scale inversely with mass of the central BH; one can
still expect to see weak imprints of spin-precession upto a region of about ≈ 5.0× 105 km. The picture that
emerges is when considering the interaction of spin gravitating objects like pulsars present close (≲100𝑀) to
intermediate-mass BHs (102−105𝑀⊙), one cannot neglect the effect that gravitomagentic spin-precession has
on their observed pulse profiles. Additionally, these systems would serve as excellent probes of properties of
BH spacetimes.

Finally, in table 4.12, we show the magnitudes, in physical units, of the accelerations ¯̂ and spin-precession
frequencies �̄�1 experienced by pulsars on equatorial circular time-like orbits with varying sizes 𝑟 and angular
frequencies Ω. Although the calculations presented here apply generally to BHs (and naked singularities;
see [312]) of masses ≳ 102𝑀⊙ , as an example, here we display the values corresponding to central masses
of 102𝑀⊙ . We choose this mass for the central objects in order to ensure that the test spinning object
approximation for the pulsar 𝑚𝑝 ≪ 𝑀 < 𝑟 holds well, as discussed in §4.6. The angular frequency values
(Ω, �̄�1), which are the relevant entities that modify observed pulse periods, can be easily compared against
the intrinsic spin angular frequency of typical pulsars which lie in the range 𝜔 ≈ 1−102 rad/s. Clearly,
gravitomagnetic spin-precession would be easily detectable from the modifications in the Fourier transform
of the pulse profile when 𝑓p, 𝑓o ≳ 10−4. For larger mass black holes, the accelerations, orbital angular
frequencies and spin-precession frequencies would be suppressed by a factor of 100𝑀⊙/𝑀 . However, the
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radius of the orbit also scales as 𝑀/100𝑀⊙ , making pulsars on such orbits much easier to detect. Also, it
can be seen from this table that pulsars that experience accelerations (𝑞 ≠ 𝑞K±) typically experience larger
spin-precession frequencies. Therefore, observations corresponding to pulsars that experience a temporary
phase of acceleration could be helpful to obtain black hole parameters from the pulsar’s Fourier spectrum.

4.8 Discussion and Astrophysical Implications

It is thought that globular clusters [328, 329] and ultra-compact dwarf galaxies [330, 331] house IMBHs
(102−104𝑀⊙) at their centres. In fact, some large galaxies like M83 may even host two such BHs [332].
Now, globular clusters are known also to host a large population of pulsars [301]; these are mostly ms-pulsars
[333–336] and so, the formation of a ms-pulsar-IMBH binary becomes quite plausible in such globular clusters
[337–339]. Further, if the estimate of the frequency of occurrence of such binaries per cluster∼1−10 is accurate,
then a few tens of such binaries could reside in the globular clusters in the Local Group galaxies, meaning that
pulse emission from such ms-pulsars could be detected by SKA and FAST. Normal pulsars have also been
found in globular clusters [340, 341]; for example, of the ∼150 detected globular cluster pulsars in our galaxy7,
≲ 10 of them are of this variety. Therefore, a case can be made for the discovery of a normal-pulsar-IMBH
binary in a globular cluster. Searches for pulsars in dwarf galaxies are yet to yield positive results as of [342].

On the other hand, SMBHs (105−109𝑀⊙) are expected to be present abundantly at the centres of nearly all large
galaxies [37, 343]. Of these, although the existence of SMBHs with masses below 106𝑀⊙ has not been firmly
established [344], there is some evidence in their favour [327, 345]. The higher end of the mass-spectrum
of astrophysical BHs (ultra-massive BHs) is thought to be around ∼1010𝑀⊙ (for example, the central BH in
NGC 1277; [346]). Large populations of about ∼105 active normal pulsars and ∼104 ms-pulsars are estimated
to reside in our galaxy [301]. Of these pulsars, about ∼ 103 are expected to exist in the central region of our
Galaxy [347–349]. Due to indications that such high number densities of pulsars near the centre of galactic
nuclear SMBHs are typical, binaries are expected to form, either through sequences of stellar interactions in
the case of large spheroidal galaxies or due to capture by the central BH of a small elliptical or spiral galaxy
(see for example the excellent discussion in [309]), and it is not unreasonable to expect to see inspiral events
[338, 350].

Astrophysical systems involving pulsars inspiralling into massive BHs are typically divided into two categories
depending on the mass of the BH, as intermediate-mass-ratio inspiral (IMRI; 103−104𝑀⊙) systems and extreme-
mass-ratio-inspiral (EMRI; 105−106𝑀⊙) systems, and form major classes of gravitational wave sources for
LISA [137]. If we consider, in particular, the scenario of a pulsar that is slowly inspiralling into a BH, then its
orbit can be well approximated as being a quasi-circular orbit [351]; for example, when spin-curvature coupling
is negligible and the pulsar orbit lies outside the ISCO. Also, when IMRIs/EMRIs enter the relativistic regime,
pulsar orbits are greatly circularized by gravitational wave emission (see for example [309] and references
therein for a discussion on this). Now, such orbits are approximately the world-lines of stationary observers
(and hence our results apply to such systems), with their four-velocities given by 𝑢`slow-infall ∝ (1, 𝜖 , 0,Ω), with
𝜖 ≪ Ω. Now, when the pulsar is within about ≈ 100𝑀 , spin-precession effects due to gravitomagnetism
would be measurable from pulsar profiles, as we have shown here, either due to change in the observed period
of pulses or in the systemic change in the morphology of the pulse shape (see [301] for a discussion on

7see for example the comprehensive catalogue of Galactic globular clusters compiled by P. Freire at http://www.naic.edu/
~pfreire/GCpsr.html

http://www.naic.edu/~pfreire/GCpsr.html
http://www.naic.edu/~pfreire/GCpsr.html
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(a) 𝜔 = 2𝜋 rad/s, 𝑎 = .1𝑀, 𝑟 = 50𝑀 , 𝑓p = 5.9, 𝑓o = 5.9
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(b) 𝜔 = 2𝜋 rad/s, 𝑎 = .1𝑀, 𝑟 = 50𝑀 , 𝑓p = 5.9×10−3 , 𝑓o = 5.9×10−3
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(c) 𝑎 = .5𝑀, 𝜔 = 2𝜋 rad/s, 𝑟 = 102𝑀 , 𝑓p = 2.1, 𝑓o = 2.1
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(d) 𝑎 = .9𝑀, 𝜔 = 2𝜋 rad/s, 𝑟 = 100𝑀 , 𝑓p = 2.1×10−3 , 𝑓o = 2.1×10−3
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(e) 𝑎 = .9𝑀, 𝜔 = 200𝜋 rad/s, 𝑟 = 10𝑀 , 𝑓p = .65, 𝑓o = .64
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(f) 𝑎 = .5𝑀, 𝜔 = 200𝜋 rad/s, 𝑟 = 10𝑀 , 𝑓p = 6.5 × 10−4 , 𝑓o =

6.4 × 10−4

Figure 4.10: We demonstrate here changes in the time profile of the squared-modulus of the deflection
vector |Z2 | of a pulsar present near Kerr BHs, of masses 102𝑀⊙ (IMBHs) and 105𝑀⊙ (SMBHs), due to
gravitomagnetism. In red we represent an isolated spatially-fixed pulsar (Ω = 0, 𝜎1 = 0), and in blue we have
a pulsar moving on an equatorial circular geodesic (Ω = ΩK+) around a Kerr black hole. The organisation in
this figure is as follows: the top and middle rows are for pulsars with spin frequencies 𝜔 = 2𝜋 rad/s, and the
bottom row is for ms-pulsars with 𝜔 = 200𝜋 rad/s. We have used placeholder values of 𝛽 = 30◦, \E = 50◦ in
all panels. We have used assorted values for the black hole spin parameter 𝑎 and the orbit radius 𝑟 for pulsars
in the Kerr spacetime, indicated below each panel; we have also included there the values of the associated
spin-precession and orbital angular velocity ratios 𝑓p and 𝑓o, which effectively determine the Fourier spectrum
of |Z2 (𝜏) |. Note that these plots are associated with the rest frame of the pulsar. Nonetheless, it is clear that
even after incorporating redshift considerations gravitomagentic spin-precession in the vicinity of a Kerr black
hole can cause significant deviations in the observed time profile of such a pulsar from that of an isolated
pulsar. Now, even though the spin-precession frequencies �̄�1 (see equation 4.5.8) experienced by pulsars on
such Keplerian orbits are independent of the spin-parameter of the central Kerr compact object 𝑎, their orbital
angular velocities ΩK+ (see equation 4.3.7) and the physical size of their orbits 𝑟 (Kerr-Schild radial coordinate)
are not. Therefore, from observed profiles of such pulsars, one can obtain independent estimates for both BH
parameters. It is useful to remember that 𝑟 can be obtained from the Boyer-Lindquist radius values given here
using equation 4.5.10 as 𝑟 =

√
𝑟2 + 𝑎2 × 1.5 × (𝑀/𝑀⊙) km, where 𝑟 and 𝑎 are in units of 𝑀 . So, the size of

the orbit in panel (c) is 𝑟 = 1.5 × 104 km.
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(a) 𝑀 = 102𝑀⊙ ,Ω = 0, 𝜔 = 2𝜋 rad/s
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(b) 𝑀 = 102𝑀⊙ ,Ω = ΩZ , 𝜔 = 2𝜋 rad/s
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(c) 𝑀 = 102𝑀⊙ ,Ω = ΩK+ , 𝜔 = 2𝜋 rad/s
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(d) 𝑀 = 102𝑀⊙ ,Ω = 0, 𝜔 = 200𝜋 rad/s
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(e) 𝑀 = 102𝑀⊙ ,Ω = ΩZ , 𝜔 = 200𝜋 rad/s
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(f) 𝑀 = 102𝑀⊙ ,Ω = ΩK+ , 𝜔 = 200𝜋 rad/s
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(g) 𝑀 = 105𝑀⊙ ,Ω = 0, 𝜔 = 2𝜋 rad/s
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(h) 𝑀 = 105𝑀⊙ ,Ω = ΩZ , 𝜔 = 2𝜋 rad/s
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(i) 𝑀 = 105𝑀⊙ ,Ω = ΩK+ , 𝜔 = 2𝜋 rad/s

Figure 4.11: The aim of this figure is to serve as an indicator for how the strength of the spin-precession
frequency varies with BH mass and spin, and position and orbital angular velocity of the pulsar. Towards this
end, we show here the contour plot of log 𝑓p = log ( |�̄�1 |/𝜔) in the 𝑎−𝑟 parameter space. On the 𝑥-axis, 𝑎
is represented in units of 𝑀 and on the 𝑦-axis, the physical Kerr-Schild size 𝑟 (see equation 4.5.10) of the
pulsar orbit is given in km. The masses of the BHs and the intrinsic spin angular frequencies of the pulsars are
given below panels. We consider here BHs of masses 102𝑀⊙ (IMBHs) and 105𝑀⊙ (SMBHs), the associated
gravitational radii (𝑟g = 𝑀) of which are 1.5×102 km and 1.5×105 km respectively. In the left column, pulsars
move at very low orbital angular frequencies Ω ≈ 0 (static observers). In the centre column, pulsars move at
the ZAMO orbital angular frequency, Ω = ΩZ, and in the right column, pulsars move on stable co-rotating
Kepler orbits, i.e. Ω = ΩK+. It is useful to remember that static observers, ZAMOs and stable co-rotating
Kepler observers are allowed outside the ergoregion (dashed-gray), horizon (brown) and the co-rotating ISCO
(dashed-red) respectively. Now, when log 𝑓p ≳ 0, effects of gravitomagnetic spin-precession appear on the
dynamical time-scale of the pulsar. When this quantity is much smaller, we require long-time observations
to not only extract the spin-precession frequency (and therefore BH parameters), but to even see the pulsar
again (see for example panel (d) of figure 4.10). From the current figure, it is evident that gravitomagnetic
spin-precession effects are significant, and therefore must necessarily be incorporated in pulsar timing analyses,
for slowly-spinning (sub-ms) pulsars present sufficiently close to IMBHs Further, studying the spin-precession

properties of such systems would yield excellent constraints on BH parameters.
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Figure 4.12: We report here the absolute values of the accelerations ¯̂ (in km/s2) and the spin-precession
frequencies |�̄�1 | (in rad/) experienced by pulsars moving on equatorial circular orbits with physical (Kerr-
Schild) radii 𝑟 (in km) in the equatorial plane of a Kerr spacetime with arbitrary orbital angular velocities Ω (in
rad/s) around black holes of mass 𝑀 = 100𝑀⊙ with spin parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 . We also include these
values for a Kerr naked singularity of the same mass and spin parameter 𝑎 = 1.01𝑀 . To compare, the intrinsic
spin frequency of a pulsar𝜔 lies between 1−102 rad/s. We consider pulsars with varying Boyer-Lindquist orbit
radii 𝑟 = 2.1𝑀, 10𝑀, 102𝑀, 103𝑀, 104𝑀 . We choose these values for 𝑟 since the ergosurface in the equatorial
plane is at 𝑟+ = 2𝑀 . At each of these radii, we vary the angular speeds of the pulsars between their maximum
and minimum allowed values Ω− < Ω < Ω+ and parametrize them with 𝑞 as Ω = 𝑞Ω+ + (1− 𝑞)Ω−. We choose
𝑞 = 𝑞K+, 𝑞K−, 𝑞static, .1, .3, .5, .7, .9, where we have defined 𝑞K± and 𝑞static as satisfying Ω(𝑞K±) = ΩK±
and Ω(𝑞static) = 0, corresponding to the equatorial non-accelerating co-rotating and counter-rotating circular
Kepler observers and the Kerr static Killing observers respectively. Dashes in entries below denote that Kepler
observers are disallowed for those values of 𝑎, 𝑟, and 𝑞 (since 𝑟 < 𝑟ISCO±). Note also that whenever allowed,
Kepler observers have zero acceleration ¯̂ = 0 and static observers have zero orbital angular velocity Ω = 0.
The number in a parenthesis (𝑛) denotes the order of magnitude of the entry, i.e. 3.2 (2) = 3.2 ×102, and serves
as a rough indicator for the ratios log 𝑓o and log 𝑓p, for second-period pulsars. For ms-pulsars, 𝑛 − 2 is the

appropriate estimate for these ratios naturally.
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how morphology can affect timing). Therefore, with high-precision pulsar timing observations courtesy of
extremely sensitive astronomy missions like SKA and FAST, these astrophysical scenarios can be investigated
independently, complimentary to gravitational wave observations.

Further, we have shown that a pulsar that is moving on circular orbits near a BH, and under the influence
of gravitomagnetic spin-precession, is detectable on earth if and only if the following geometric condition is
satisfied,

\E = ±𝛼 + 𝛽, (4.8.1)

where in the above, \E is the angle between the direction of the earth and the precession-axis of the pulsar, 𝛽
is the angle between the spin-axis and the precession-axis and 𝛼 is the angle between the spin and radiation
axes. The precession-axis in the current chapter (for pulsars moving on equatorial orbits) lies along the 𝑧-axis,
i.e. it is parallel to the spin-axis of the central BH. Also, when the pulsar doesn’t experience spin-precession
(𝛽 = 0), the condition for pulses to be observed that must be met is,

\E = 𝛼. (4.8.2)

Now, let us consider the evolution of a single pulsar-BH system. When the pulsar is relatively far away from
the BH, if one initially obtained pulses on earth (condition 4.8.2 is met), and the orientation of the spin-axis
of the pulsar w.r.t. the 𝑧-axis is not small (𝛽 0 0), then the geometric condition for when the pulsar begins to
experience non-trivial spin-precession, given in equation 4.8.1, would not be met. In such cases, the pulsar
would eventually vanish. On the other hand, if 𝛽 ≈ 0, then the pulsar would be visible for the entire duration
of its inspiral, opening up wonderful possibilities. Further, pulsars in binaries with BHs that did not initially
satisfy equation 4.8.2, and therefore went undetected, could be caught by our detectors close to the BH if they
started to approximately satisfy equation 4.8.1. In this regard, we think it relevant to mention here that there
have been numerous studies that highlight the role that pulsars could play in the discovery (and the subsequent
analysis of the properties) of new IMBHs near Sgr𝐴★ (see for example [132, 352, 353]), and our results here
further strengthen the case for pulsars as probes of BH spacetimes.

Another implication of our findings here is that a normal or ms-pulsar with intrinsic spin-angular frequency
in the range 𝜔=1−102 rad/s could appear to pulsate at much faster frequencies when present near a massive
BH, with the consequence that it could even masquerade as a genuine sub-millisecond pulsar (see for example
panels a and c of figure 4.10). Moreover, the pulsar mass-shed or break-up spin frequency is typically around
a𝑏 ≃ 1200 Hz (see for example [354]), depending on the equation of state, and an ordinary pulsar present near a
massive BH could appear to pulsate at frequencies larger than even a𝑏. Therefore, neglecting gravitomagnetic
spin-precession effects near BHs could possible lead to incorrect conclusions regarding the internal structure
of neutron stars. Furthermore, gravitomagnetic effects present one possible explanation for pulsar nulling and
for pulsar-related quasiperiodic oscillations, since spin-precession could cause pulsars to appear at frequencies
smaller than the intrinsic spin-period (see panels d and e of figure 4.10). If this hypothesis renders a partial
explanation for QPOs (maybe for a specific class of them), this could even lead to the discovery of black hole
binary partners for some pulsars.

The Kerr spacetime, depending on the relation between the specific angular momentum 𝑎 and mass 𝑀 of the
central object, describes either a BH or a naked singularity (NS), or possibly even more exotic hypothetical
objects like superspinars [55]. Disregarding for now the latter case, when 𝑎 ≤ 𝑀 , the spacetime contains a
BH, and a NS otherwise. We note that all of the analysis presented in this chapter applies to Kerr NSs equally
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well [312]. Further, since the spin-precession frequency (and consequently the pulse frequency) depends on
the spin-parameter 𝑎, one could identify what the nature of the companion of a pulsar is, namely whether or
not it possesses an event horizon. In [311] and [312], the spin-precession frequency along Killing orbits in
the Kerr spacetime was revisited and various trends were outlined. It was noted there that spin-precession
frequencies experienced by such observers can become quite large in regions of strong gravitational fields.
First, spinning objects that remain fixed spatially (static Killing orbits) close to a Kerr ergosurface would
experience drastically large spin-precession frequencies. Now, as was discussed in [200] for example, since
the topology of the ergosurface is drastically different for Kerr BHs (spheroidal) and NSs (toroidal), one
could potentially distinguish these objects from pulsar measurements, due to the effect that gravitomagnetic
spin-precession has on them [311]. Similarly, sharp rises in the spin-precession frequencies were found to
occur for observers moving on equatorial circular orbits (stationary Killing orbits) either around Kerr BHs
near their event horizons or around Kerr naked singularities when near the ring singularity itself. Since the
physical sizes of the horizon (𝑟H =

√
2𝑟H; see equation 4.3.2) and the ring singularity (𝑟sing = 𝑎) can be easily

distinguished between, one could use pulsar timing measurements to identify the nature of the compact object.
Additionally, the decay of the spin-precession frequency as one moves off of the equatorial plane (\ = 𝜋/2)
to much smaller, reasonable values is much more drastic near a naked singularity, as compared to near a
BH, roughly due to the presence of the horizon for \ ≠ 𝜋/2 [312]. And so, small deviations in the pulsar’s
orbit from the equatorial plane could also be immensely useful in distinguishing the two compact objects.
Therefore, in practice, the detection of a pulsar near a supermassive collapsed object with a frequency much
higher than the maximum observed pulsar frequency (716 Hz; [355]) could strongly suggest the existence of
an ergoregion, event horizon or a ring singularity depending on the state of the motion of the pulsar. Further,
one could also potentially test the no hair theorem for black holes (see [8]) if, for example, spin-precession
measurements of ‘Killing pulsars’ indicate deviations from the norm in the structure of the associated horizon
or ergosphere.

While the event horizon, if present, could be detected by the above method, additional measurements, for
example, the ratio of the pulsar radial distance to the central collapsed object mass, could be used to estimate
the spin of this collapsed object, and hence to identify its nature (BH or NS). This can be done by comparing
the measured pulsar spin-precession rate with the theoretical computation of this rate as a function of the
pulsar radial distance in the unit of the collapsed object mass and the collapsed object spin. The required
estimation of the distance can be obtained either from the gravitational radiation chirp characteristics or from
the known mass of the supermassive collapsed object and the orbital period of the pulsar. The orbital period
can be inferred from a periodic variation of the pulsar’s intensity, which can be associated with its orbital
motion. For example, such an intensity variation (or even a periodic disappearence of the pulses) can happen
due to the light bending effect, as the pulsar moves behind the central collapsed object and comes in front of
it periodically. The spectrum (or the intensities in a few radio bands) may also periodically vary due to the
orbital motion related Doppler effect.

Let us consider now more modest tests involving, for simplicity, a pulsar that moves with very small orbital
angular velocities (Ω ≈ 0) around a Kerr BH or naked singularity (static Killing orbits). For such pulsars, the
overall periodicity of the deflection vector |Z2 (𝜏) |, and therefore of the observed pulse profile, is determined
by the play-off between the spin-precession frequency Ωp and the intrinsic spin frequency of the pulsar 𝜔.
Roughly, if Ωp > 𝜔, then pulses appear at rates faster than the intrinsic spin frequency. On the other hand, if
this relation is reversed, one misses out pulses. Now, from table 1, one can safely conclude that spin-precession
effects grow faster as a pulsar slowly moves towards the ergoregion of a Kerr naked singularity, as opposed
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to that of a Kerr BH. Similar statements can be made for pulsars moving on equatorial circular orbits, and so
over the course of an inspiral of a pulsar into a BH or naked singularity, if one could extract and characterize
the evolution of the spin-precession frequency (Ωp (𝑟)), then one could distinguish the two.

4.9 Conclusions

The spin-precession of the spin-angular momenta of test objects present in the vicinity of a Schwarzchild BH,
due to geoedetic effects, was studied in [150], and [151] calculated the total spin-precession around Kerr BHs
by including gravitomagnetic effects. In both papers, the overall deflection of the spin-vector after an entire
orbit was obtained and as far as we can tell, our work [125], reviewed here, presents a new application of
instantaneous spin-precession effects, as opposed to the cumulative spin-precession effects that have generally
been studied.

If an isolated pulsar spins around its axis at an angular frequency of 𝜔, then one obtains pulses on earth every
Δ𝑡 = 𝜔/2𝜋 and the Fourier spectrum of this pulse profile contains a single unique peak. However, we find here
that if the same pulsar was actually present near a Kerr BH, then its Fourier spectra would exhibit multiple
peaks corresponding to its orbital angular velocity Ω, its spin-precession frequency Ωp, the vector sum of ®𝜔
and ®Ωp denoted by 𝜔eff =

√︃
𝜔2 +Ω2

p + 2𝜔Ωp cos 𝛽, and various combinations of the sums and differences of
these three frequencies. In particular, only when Ωp and 𝜔eff are commensurate, one obtains exactly periodic
pulses on earth. Although here we worked mostly in the pulsar’s frame, we indicated that it was possible to
obtain the change in the rate of pulses obtained on earth (see the discussion in §4.6.4).

Our computations for the astrophysically important cases corresponding to pulsars moving around IMBHs and
lower-end SMBHs on equatorial circular orbits show that gravitomagnetic spin-precession leads to significant
modifications in the associated observed pulse profile, either leading to substantial modifications in either
pulse-arrival times or in pulse-shape. Therefore, these effects need to be accounted for properly to interpret
the timing of pulsar signals when the source closely orbits a IMBH that may exist in globular cluster cores, for
example. Furthermore, models for pulsar timing observations that include these effects will therefore provide
accurate tests of BH spacetimes and parameters.

Standard pulsar searches use Fourier techniques [356] to search for a priori unknown periodic signals. Since
our analysis predicts precisely the change in the number of peaks in the Fourier profile of the power spectrum
of a pulsar, as discussed in §4.6.6 above, looking for gravitomagnetic spin-precession effects via pulsar timing
would likely be easily implementable. However, typically one assumes in such searches that the apparent pulse
period remains constant throughout the observation [301], which when violated, as will likely be the case
during inspirals, could lead to a loss in signal-to-noise ratio (SNR) of the signal power in the Fourier-domain.
In such instances, one could use the so-called ‘acceleration searches’ [357], which have been proven to improve
SNR in such instances. This technique, on the other hand, assumes that the pulsar has a constant acceleration
during the observation, which works excellently well for the pulsar orbits we have considered here. In fact in
table 4.12 we have even catalogued the values of the accelerations experienced by pulsars on slowly inspiralling
orbits around BHs for ready reference.

We note that an analytic derivation of the evolution of the beam vector for a pulsar that experiences grav-
itomagnetism is detailed in appendix §E to make clear that the extension to include pulsars moving along
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non-equatorial Killing orbits is straightforward. It is worth mentioning that it would be useful to extend
the analysis presented here to include even more astrophysically interesting scenarios of pulsars moving on
arbitrary time-like orbits, building on the results of [153], where the spin-precession frequency experienced
by such observers was recently obtained. Recently, [358] obtained closed-form analytic solutions for the
properties of the motion (evolution of orbit with time etc.) of test objects moving on non-equatorial eccentric
bound trajectories around a Kerr black hole; this work could drastically simplify the calculational aspect of
obtaining spin-precession frequencies along arbitrary trajectories, and potentially help in generating pulse
profile templates for pulsars around IMBHs and SMBHs for SKA and FAST to use (one would have to assume
a beam structure model, though; see for instance figure 5 of [301]).

Also, as mentioned before, here we have avoided solving the full Mathisson-Papapetrou equations by neglecting
the effect of spin-curvature coupling on the motion of the pulsar, which is an excellent approximation for pulsars
that either (a) spin slowly, or (b) are present near SMBHs (𝑀BH ≥ 106𝑀⊙), or (c) are sufficiently far away
(𝑟 ≳ 50𝑀BH) from massive BHs (𝑀BH ≥ 102𝑀⊙). Further, as was discussed in a couple of excellent papers
recently [138, 309], the pulse profile of ms-pulsars present in the equatorial plane of a massive Kerr black hole
(and sufficiently close to it) can be significantly altered due to this effect and so, it would be safe to conclude
that our calculations work best for normal pulsars around IMBHs/SMBHs and for ms-pulsars present near
SMBHs or when sufficiently far away from IMBHs.

Finally, it is worth noting that we have presented proof that radiation from Killing pulsars does in fact reach
earth when a certain simple geometric condition is met (see appendix D). This is equivalent to a ray tracing
analysis.
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Summary and Conclusions

We think it useful to present here a unified summary for brevity and perspective.

As outlined in the introductory comments in Chapter 1, when a physical theory produces highly non-intuitive
predictions like the existence of black holes, one must assess whether these predictions are robust, or generic.
In the current context, this would entail an analysis of the full non-linear (orbital) stability of the formation
of a black hole against arbitrary changes in the initial conditions of the formation process. Such an analysis
is typically extremely complex and one reduces the difficulty considerably by examining the linear orbital
stability of the formation process against infinitesimal perturbations of the initial data [112].

Therefore, in Chapter 2, we set up the linearized field equations that govern metric perturbations around curved
vacuum background solutions to the full non-linear Einstein field equations, and discussed how establishing
linear stability of the background against arbitrary solutions to these equations is also a highly non-trivial
problem. Specialising further to the study of a specific type of linear perturbations, namely those that display
a harmonic time dependence, we studied the mode stability of the Schwarzschild black hole in careful detail.
We hinted that Kerr BHs were stable and Kerr naked singularities were not. At this point, we turned to
considerations of the mode stability of Kerr superspinars.

Here the term ‘Kerr superspinar’ is used to denote those (thus far, largely hypothetical in 3+1 spacetime
dimensions) compact objects whose exterior geometries could be described by the overspinning Kerr metric,
but are devoid of the accompanying naked singularity [55]. Recently, with the following perspective, the mode
stability of such objects has been explored. Even though a nakedly singular spacetime is unstable against mode
perturbations or fluid perturbations, this should not mean that a study of the properties of such spacetimes
must be hastily abandoned. Singular metrics are solutions of the classical Einstein field equations and the
expectation is that the deeper theory of quantum gravity would smear out these singularities, irrespective
of whether or not they are covered from asymptotic observers by event horizons. That is, quantum gravity
could introduce classes of legitimate compact objects such that their exterior geometries are described by
metrics that were classically nakedly singular, but with their central singular regions excised and replaced
by regions governed by Planckian physics. For example, string theory, a popular candidate for the quantum
theory of gravity, has proven to be exceptionally good at resolving spacetime geometries with various timelike
singularities and such singularities, inconsistent in general relativity, then represent new classes of legitimate

123
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compact objects in the string-theoretic completion of general relativity (see for example the pair of papers:
[198, 199]).

An interesting question then arises, how strongly do the properties of a classical nakedly singular metric (like
mode stability, shadows, images etc.) depend on the central naked singularity itself? Towards answering such a
question, an attempt to study the stability of these singularity-excised spacetimes was recently made [70]. The
study of mode stability of any given spacetime requires one to solve the linearized Einstein field equations with
appropriate boundary conditions, as was discussed earlier. Irrespective of the spacetime under consideration,
one typically imposes the condition that there are no sources at asymptotic infinity, i.e. no incoming radiation
from spatial-infinity. As for the boundary condition at the inner edge, in the case of black hole spacetimes,
one naturally imposes perfectly absorbing boundary conditions at the horizon. However, for exotic objects
like Kerr superspinars, there is no such natural boundary condition for incoming modes at the ‘surface’ of a
superspinar and one must find quasi-normal modes and their frequencies for each boundary condition. With
this in mind, we presented an extensive review of our results on the mode stability of Kerr superspinars, which
were originally presented in [71]. In particular, we showed how near-extremal Kerr superspinars are mode
stable against an infinite class of boundary conditions. It is to be noted that this class of boundary conditions
satisfied a particular condition (2.5.28). It remains to be seen whether when this condition is relaxed (𝐶, 𝐷
take all allowed values) near-extremal superspinars are still stable against mode perturbations. Further, one
should also study what happens for superspinars with higher spins (𝑀 ≪ 𝑎).

Having thus examined aspects of linear stability analyses in general relativity, we moved to a discussion of
the Cauchy problem of the Einstein field equations, and a review of the statement of non-linear stability of
a particular solution, which was previously deferred. Taking advantage of the fact that the evolution of a
spherically symmetric, regular cloud of pressureless matter to a Schwarzschild black hole is known to be
given by the Datt-Oppenheimer-Snyder (DOS) collapse [44], that it’s initial data is well characterised, and the
evolutions of nearby initial data are also well understood (determined by the Lemaître-Tolman-Bondi collapse
models), we sought to demonstrate how a typical non-linear stability analysis in the context of general relativity
proceeds. In this process, we also discussed there the visibility of the eventual spacetime singularity that forms
in these collapse evolutions, following [104] (also see references therein). In specific, the DOS collapse
to a Schwarzschild black hole evolves from homogeneous initial data (𝜌(0, 𝑟) = 𝜌0) and we considered a
two-parameter open subset of initial data 𝜌(0, 𝑟) = 𝜌0 − 𝜌2𝑟

2 (𝜌2 ≥ 0) around it. We showed that the initial
compactness 𝜒 = 𝑀/𝑟𝑏 of collapsing cloud (where 𝑀 is the total Arnowitt-Deser-Misner (ADM) mass [248]
of the cloud and 𝑟𝑏 is its initial radius) governed the nature of the singularity in these models, i.e. when
𝜒 ≲ .44, the cloud formed a globally visible naked singularity and a black hole otherwise.

In the same chapter, we also analysed notions of stability of dynamical systems in classical mechanics, in
the framework of symplectic geometry, and attempted to draw a formal analogy to equivalent notions in the
study of spacetimes in GR, based on our work [104]. From a pedagogical standpoint, this geometric approach
aids in developing a clearer understanding of the formal statements of stability analysis in general relativity.
Beginning with a construction of the phase space of classical mechanical systems as a symplectic manifold, we
revisited the concept of a symplectic Hamiltonian vector field, which is derived from a Hamiltonian function
defined over phase space, and proceeded to discuss how the governing dynamical equations of motion are
simply the flow equations of this vector field. Non-linear and linear stability analyses of the equilibrium or
critical points of a dynamical system then obtain the intuitive geometric interpretation of having simply to do
with the divergence of the flow of the Hamiltonian vector field and its linearization respectively.
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Earlier we had discussed the Cauchy problem of the vacuum Einstein field equations, and argued that whenever
it is well-posed, the solutions of the EEs are necessarily globally hyperbolic spacetimes (M, 𝑔) [208, 210, 211],
i.e. they are diffeomorphic to Σ ×R, where Σ is a 3-submanifold with a Riemannian 3-metric 𝛾 and R denotes
the time direction. Therefore, typically physically relevant solutions of the Einstein field equations admit a 3+1
foliation in the above sense. Armed now with an explicit notion of time, the Hamiltonian formulation of general
relativity can be set up for such spacetimes, with 𝛾(𝑡) the generalised coordinate, from which one can define
also a generalised conjugate momentum ^(𝑡). The GR Hamiltonian function whose flow equations correspond
to the vacuum Einsten equations is the well known ADM Hamiltonian [248]. Then when inquiring after the
stability of a spacetime (M, 𝑔), simply by rewriting 𝑔 ≡ 𝛾(𝑡), one can immediately transport statements that
were made regarding the stability of solutions in CM to equivalent statements for GR. It is of vital importance
that we note that we have not discussed here the construction of the reduced phase space by forming the
quotient space of the constrained phase space with the gauge orbits, and therefore work remains to be done
before this nice analogy can be called fully formal. We also mention in passing how the eventual desire is to
find the Kerr family of solutions to be a dynamical attractor in the phase space of general relativity. One may
see §2.10 for a more detailed exposition of the conclusions and comments on these aspects.

This concluded part I of this thesis on stability analysis. As discussed previously, once stability of a solution
amplifies the attractiveness, from an astrophysical standpoint, of the object it describes, a study of how it may
be detected becomes importance. Subsequently, we then moved to an exploration of how one may detect
compact objects in general relativity, i.e. to part II.

In Chapter 3, we compared shadows cast by Schwarzschild black holes with those produced by two classes of
naked singularities that result from gravitational collapse of spherically symmetric matter. The latter models
consisted of an interior naked singularity spacetime restricted to radii 𝑟 ≤ 𝑅b, matched to Schwarzschild
spacetime outside the boundary radius 𝑅b. While a black hole always has a photon sphere and always casts a
shadow, we found that the naked singularity models have photon spheres only if a certain parameter 𝑀0 that
characterizes these models satisfies 𝑀0 ≥ 2/3, or equivalently, if 𝑅b ≤ 3𝑀 , where 𝑀 is the total mass of the
object,and such models do in fact produce shadows. However, it was shown that models with 𝑀0 < 2/3 (or
𝑅b > 3𝑀) did not possess photon spheres and therefore would not produce shadows. Instead, they produce
an interesting “full-moon” image. These results imply that the presence of a shadow does not by itself prove
that a compact object is necessarily a black hole. The object could be a naked singularity with 𝑀0 ≥ 2/3, and
one would require need other observational clues to distinguish the two possibilities. On the other hand, the
presence of a full-moon image would certainly rule out a black hole and might suggest a naked singularity
with 𝑀0 < 2/3. It would be worthwhile to generalize the present study, which is restricted to spherically
symmetric models, to rotating black holes and naked singularities.

Studying properties of null geoedesics, amongst other aspects, in black hole and naked singularity spacetimes
has been of central interest in astrophysics, when attempting to detect these objects. This includes character-
izing how compact objects lens/bend light, and as discussed above how they form shadows and images. Other
methods to detect such objects include examining the motion of stars in their vicinity etc. The motivation for
Chapter 4 was to determine whether the effect of gravitomagnetic spin-precession pulsars in the vicinity of
spinning massive compact objects experience could yield a fresh, independent estimate of the spin of massive
black hole or naked singularity. As argued there, indeed the frequency of said precession falls nicely into the
category of previously-unused ‘new’ local physical observables. We provide below a short description of why
considerations of this effect are exciting, particularly in the context of upcoming missions such as the Square
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Kilometre Array (SKA; [131, 132]) and the Five-hundred-meter Aperture Spherical radio Telescope (FAST;
[133, 134]).

In classical Galilei-Newton mechanics, the external gravitational field of an object, spinning or otherwise,
was only given by its mass. In general relativity, however, it is given by both its mass and mass current
(angular momentum). The ‘passive’ part of the external gravitational field that causes test objects to accelerate
is termed the gravitoelectric field and the ‘active’ piece that causes spinning objects to precess is called the
gravitomagnetic field, in analogy with electromagnetism. See for example [155–157] and references therein
for a more formal description of this connection between gravity and electromagnetism in terms of their tidal
tensors. The precession of spins due to frame-dragging is a manifestation of gravitomagnetism, and is also
the reason behind the precession of particle orbits. This feature is incorporated into the spacetime structure
and can be thought of as a sort of spin-spin interaction.

Rotating black holes and naked singularities are therefore naturally expected to influence spinning objects in
this way, and building on the results obtained by [151] on the frequency of precession of spin-vectors attached
to two types of Killing observers - static and stationary - in arbitrary stationary spacetimes, we showed through
an extensive discussion in [311, 312] that its properties depend both on the motion of the spinning object,
and arguably more importantly, on the angular momentum of the central Kerr compact object. Therefore,
spin-precession frequency as this new observable fits the bill exceptionally well. We remind the reader that
static observers remain fixed to a point in space and stationary observers move on circles, with fixed angular
velocity, around the black hole or naked singularity axis.

Following the discussion in §4.4, we set up the following experiment in [311], using static Killing observers.
Consider an astronaut, equipped with a gyroscope, that initially remains fixed at point 𝐴1, close to a Kerr
compact object. He holds himself at 𝐴1 for a long time 𝑡 and then moves to another point 𝐴2 and holds himself
fixed thereafter. 𝑡 is much larger than the dynamical time-scale in the problem defined by the dimensionless
spin parameter of the Kerr object, 𝑎/𝑀 ≡ 𝐽/𝑀2. Then, we showed that for points 𝐴1, 𝐴2 along (or close
to) the rotation axis of the Kerr object, this change in ΩLT can be used to identify the nature of the compact
object. In this case, ΩLT is also called the Lense-Thirring precession frequency and it reduces appropriately to
the standard weak-field limit result. Specifically, for a BH, he would see a sharp change in the spin-precession
frequency on moving from 𝐴1 to 𝐴2, whereas for a NS the change would always be smooth and gradual. We
argued that for such ‘static observers,’ΩLT is ‘sensitive’ to the location of the ergosurface, which is the bounding
surface of the ergoregion. For such observers, in both cases, in the limit of approach to the ergosurface, ΩLT

becomes arbitrarily large. We pointed out that since the geometric structure of the ergosurface is dramatically
different for BHs and NSs, this feature of the spin-precession frequency could be used to distinguish the two.
The ergosurface exists for all angles \ for a BH whereas this is not the case for a NS and a finite opening
angle, which depends on a, opens up around the pole (\ = 0), for which the ergosurface is non-existent; see
§4.3 above.

In [312], the above experiment was extended to included the larger class of stationary Killing observers. We
considered the case of an astronaut, equipped with a gyroscope, orbiting a Kerr compact object on a circle,
with fixed angular velocity. We argued that for such observers the total spin-precession frequency experienced
by the gyroscope, Ωp, is sensitive to the existence/location of the event horizon. The subscript p denotes that
this is the total spin-precession frequency, including the contribution from geodetic precession, and not just
the Lense-Thirring precession. For BHs, Ωp diverges close to the horizon whereas for NSs, Ωp diverges only
at the singularity. The horizon exists for all \ whereas the Kerr ring singularity lies in the equitorial plane

https://www.skatelescope.org/books/
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\ = 𝜋/2, thereby allowing us to setup the following distinguishing criterion in terms of Ωp. Now, suppose the
astronaut is initially in a circular orbit 𝑂1 for a long time and then switches to an orbit 𝑂2 and then remains
there, and let us say these orbits 𝑂1, 𝑂2 subtend \1, \2 (\1 ≁ \2) respectively at 𝑟 = 0. Then,

• if Ωp becomes arbitrarily large in the limit of approach to the central object for both \1, \2 then the
spacetime contains a black hole, whereas

• if Ωp becomes arbitrarily large in the limit of approach to the central object for at most one of \1, \2

then the spacetime contains a naked singularity.

Finally, we note that these results can be extended to any black hole or naked singularity spacetime with
similar Killing symmetries. We have used in [311, 312] the fact that there exist invariant characterizations
of ergoregions and horizons respectively in terms of the Killing vectors. We set up observers equipped with
gyroscopes along integral curves of these Killing vectors and then studied the spin-precession behaviour of
these gyroscopes and interpreted any arbitrarily large growth in the modulus of the spin-precession frequency
as being potential indicators of the presence of an ergosurface [311] or a horizon [312].

Recently in [125], we considered the effects of gravitomagnetic spin-precession on the observed pulse profile
of a pulsar that is present in a binary with a massive Kerr black hole, as an application of our results [311, 312].
In this scenario, a pulsar can then be treated as a test spinning mass, and we show that it is possible to
obtain an independent estimate of the specific angular momentum of the central compact object from pulsar
timing measurements. Specifically, considering pulsars to be moving on equatorial circular orbits of the Kerr
spacetime, we worked out the observed rate at which pulses appear on earth. Ths is possible since measuring
the change of the spin-axis of a pulsar moving along the world-line of a static Killing observer in the Kerr
spacetime, relative to its Frenet-Serret triad (see for example [125] on why this frame), gives also the change
in the spin relative to fixed asymptotic observers (see for example §II.C of [317]). This precious property is
particular to Killing observers, as we discussed above.

Fascinatingly, we find that for unaccelerated motion, gyroscopic spin-precession, relative to asymptotic fixed
observers, stems from purely geodetic parallel-transport and has no contribution from the spin of the central
Kerr compact object! From observations of pulsars moving along circular geodesics, one may be able to
ascertain an independent estimate of the mass of the central black hole or naked singularity and possibly the
radius of the orbit. Therefore, it appears that to be able to extract information from pulsar timing regarding the
spin of the Kerr black hole or naked singularity, one must observe pulsars that are accelerating, even though
the phase of acceleration might be extremely brief.

We note here the important distinction from the readings one would obtain here from those for an isolated
pulsar. An isolated pulsar would appear to emit pulses at a time period 𝜔/2𝜋, i.e., at its intrinsic spin angular
frequency. As we see here, a pulsar in a stationary spacetime will appear to pulse at a different frequency.
If one considers pulsars present in strong gravitational fields like near the ergosurface of a Kerr black hole
or naked singularity, pulses on earth appear at the spin-precession frequency and the intrinsic spin angular
velocity is completely washed out!

Our theoretical prediction of high pulsar spin-precession rates near an event horizon implies the following
new and interesting aspects, some of which could eventually be observed. The existence of sub-millisecond
pulsars: our theoretical finding provides a new mechanism to give rise to apparent sub-millisecond pulsars,
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which have not been observationally found so far. Identifying Kerr black holes and naked singularities: the
Kerr spacetime, depending on the relation between the angular momentum 𝐽 and mass 𝑀 of the central object,
describes either a BH or a NS. That is, when 𝐽 ≤ 𝑀2, the spacetime contains a BH, and a NS otherwise. Since
these modifications in pulse frequency are characteristic of the nature of the collapsed object, i.e., whether or
not it possesses an event horizon, one could identify what the compact object companion of an observed pulsar
is. In fact, these deviations from the pulsar’s intrinsic spin period could be used to locate the horizon even.
Other aspects include explanations of multiple-peaked pulse profiles, pulsar nulling etc. Future directions
include working out trends in pulsar profiles for more general models for its motion; recent significant advances
in characterizing spin-precession generally [153, 163] would go a long way towards achieving these goals.
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Appendix A

Conversions between Frames1

We discuss here the conversions between the various frames that we have introduced. 𝑒�̂�, 𝑒 ˆ̄𝑏 denote elements
of the Frenet-Serret basis associated with static Killing observers in the Kerr and adapted-Kerr spacetimes
respectively, and 𝑒`, 𝑒 ā are elements of the Boyer-Lindquist and adapted-Boyer-Lindquist coordinate basis
respectively.

We already know the Jacobian 𝐽 for the coordinate transformation that transforms elements of the BL coordinate
basis to their counterparts in the adapted-BL coordinate bases, 𝑒` → 𝑒 ā (4.3.13),

𝑒 ā =

(
𝐽−1

) `

ā
𝑒` . (A.0.1)

Let us now define 𝑃1 to be the projection matrix that projects vectors defined in the BL coordinate basis onto
the FS tetrad associated with Kerr static observers and 𝑃2 to be the projection matrix that projects vectors
defined in the adapted-BL coordinate basis onto the FS tetrad associated with adapted-Kerr static observers,
that is,

𝑒�̂� = (𝑃1) `

�̂�
𝑒`, (A.0.2)

𝑒 ˆ̄𝑏 = (𝑃2) ā
ˆ̄𝑏
𝑒 ā .

Then, the entries of 𝑃2 can be read off from (4.3.17) to be,

(𝑃2) ā
ˆ̄𝑏
=



1√−𝑔0̄0̄
0 0 0

0 𝑔0̄0̄,1
2 ¯̂𝑔0̄0̄𝑔11

𝑔0̄0̄,2
2 ¯̂𝑔0̄0̄𝑔22

0

− 𝑔0̄3̄√
𝑔0̄0̄Δ03

0 0
√︃

𝑔0̄0̄
Δ03

0 𝑔0̄0̄,2
2 ¯̂𝑔0̄0̄

√
𝑔11𝑔22

− 𝑔0̄0̄,1
2 ¯̂𝑔0̄0̄

√
𝑔11𝑔22

0


.

Similarly, 𝑃1 is obtained simply by replacing the barred metric components in the above by the unbarred Kerr
metric components. Then the conversion between the FS tetrads associated with static Killing observers in

1Reprinted excerpt with permission from [P. Kocherlakota, P. S. Joshi, S. Bhattacharyya, C. Chakraborty, A. Ray, and S. Biswas,
To appear in Mon. Not. R. Astron. Soc. (2019).]. Copyright (2019) by the Oxford University Press.
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the Kerr and adapted-Kerr metrics is given as,

𝑒 ˆ̄𝑏 = (𝑃2) ā
ˆ̄𝑏

(
𝐽−1

) `

ā

(
𝑃−1

1

) �̂�

`
𝑒�̂�, (A.0.3)

Let us denote the conversion matrix in the above succinctly as 𝑄, i.e.,

𝑄 �̂�
ˆ̄𝑏
= (𝑃2) ā

ˆ̄𝑏

(
𝐽−1

) `

ā

(
𝑃−1

1

) �̂�

`
. (A.0.4)



Appendix B

Distinguishing Near-Extremal Kerr
Naked Singularities from other Compact
Objects1

In §4.4, we discussed how the spin-precession frequency, in the case of a BH, becomes arbitrarily large at the
horizon for all values of 𝑞 barring 𝑞 ∼ 0.5. For a NS, it diverges only near the ring singularity 𝑟 = 0, \ = 𝜋/2
and remains finite even for 𝑟 = 0 for 0 < \ � 𝜋/2. We pointed out that this can be used to distinguish a BH
from a NS. Further, from figure 4.6, a general feature that emerges is that with increase in 𝑎/𝑀 , the radial
profile of Ωp becomes increasingly ‘smoother.’ This motivates us to use the ‘sharp’ features that appear for
naked singularities with 1 ≲ 𝑎/𝑀 to separate them from those with 1 ≪ 𝑎/𝑀 . Indeed, we find that this is
possible and devote this section to highlighting these aspects.

We lay emphasis on this study because of the importance of near extremal naked singularities in general
relativity. For example, in a black hole binary collision, like the one studied by LIGO recently, the angular
momentum of the compact object during the collision could temporarily exceed the Kerr bound and result in
a temporary near-extremal naked singularity. Further, if a thick accretion disc could spin up a near-extremal
black hole, it would likely form a near-extremal naked singularity due to its proximity to the black hole
geometry in the 𝑎 − 𝑀 parameter space. We mention in relation to this point that using the Polish doughnut
model (although not for Kerr spacetime in particular), it was shown in [359] that overspinning compact objects
can be generated by thick accretion discs.

The radial variation of the modulus of the spin-precession frequency for all 𝑞, at \ ∼ 00 is smooth, as can be
seen from figure B.1 and figure B.2. For an observer moving with an angular velocity that is not close to the
ZAMO frequency (𝑞 ≁ 0.5), a clear maxima-minima pair appear around 𝑟 = 1 resulting in a sharp drop/rise
in Ωp at that radius, as can be seen from panels (a) and (e) of figure B.1. The event horizon of an extremal
black hole 𝑎/𝑀 = 1 is located at 𝑟 = 1 and we link this sharp feature to this observation. We will discuss
this in some more detail in the following subsection. Roughly, however, the reason for these sharp features is
as follows. From equation 4.4.1, we see that Δ appears in the denominator. We know that Δ = 0 marks the

1Reprinted excerpt with permission from [C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P. S. Joshi, and A. Królak,
Phys. Rev. D 95, 084024 (2017).] Copyright (2019) by the American Physical Society.
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(c) 𝑎/𝑀 = 1.0001, 𝑞 = 0.5 (Ω = )
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(d) 𝑎/𝑀 = 1.01, 𝑞 = 0.5 (Ω = )
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(e) 𝑎/𝑀 = 1.0001, 𝑞 = 0.7 (Ω > )
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(f) 𝑎/𝑀 = 1.01, 𝑞 = 0.7 (Ω > )

Figure B.1: The modulus of the spin-precession frequency Ωp (in 𝑀−1) versus 𝑟 (in 𝑀) has been plotted for
near-extremal naked singularities with two different 𝑎/𝑀 for different 𝑞, \. We have used 𝑎/𝑀 = 1.0001, 1.01
in the plots in the left and right columns and 𝑞 = 0.3, 0.5, 0.7 in the top, middle and bottom rows, which are
representative of Ω < ΩZ,Ω = ΩZ and Ω > ΩZ respectively. In each panel, the black dotted, dot-dashed,
dashed and regular lines represent \ = 100, 500, 700, 900 respectively. This plot shows that for all 𝑞, at \ ∼ 00,
the radial variation of Ωp is smooth. From panels (a),(e), for Ω ≁ , a clear maxima-minima pair appears around
𝑟 = 1 resulting in a sharp drop/rise in Ωp at that radius. The event horizon of an extremal black hole 𝑎/𝑀 = 1
is located at 𝑟 = 1 and we link this sharp feature to this observation. At Ω = ΩZ itself Ωp is smooth, devoid
of this particular feature. We discuss Ω ∼ ΩZ in the next figure since these 𝑞 values have richer features. As
can be seen from panels (b),(f), this sharp rise/drop in Ωp gets smoother with increasing 𝑎/𝑀 . By 𝑎/𝑀 ∼ 1.1,
these features completely vanish and we interpret this feature as providing an important criterion based on
which one can distinguish a near-extremal NS (1 < 𝑎/𝑀 < 1.1) from one with a higher spin. In the inset,
we display approximately at what angle \ this sharp 𝑟 = 1 feature starts to appear from and we have used
\ = 50, 100, 150, 300 for the gray dashed, black dotted (same as the main panel), red and blue lines respectively.
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(a) 𝑎/𝑀 = 1.0001, 𝑞 = 0.49 (Ω ≲ ΩZ)
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(b) 𝑎/𝑀 = 1.01, 𝑞 = 0.49 (Ω ≲ ΩZ)
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(c) 𝑎/𝑀 = 1.0001, 𝑞 = 0.51 (Ω ≳ ΩZ)
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(d) 𝑎/𝑀 = 1.01, 𝑞 = 0.51 (Ω ≳ ΩZ)

Figure B.2: We plot now Ωp (in 𝑀−1) vs r (in 𝑀) for near-extremal naked singularities with 𝑎/𝑀 = 1.0001
and 1.01 at different \, for 𝑞 ∼ .5 (𝑞 ≠ .5). The line styles are the same as figure B.1 and the insets in this figure
demonstrate that for these values of 𝑞, that is 𝑞 close to .5 but not equal to, there are richer features at smaller
angles \. It can be seen from this figure, as was from figure B.1, that with increase in 𝑎/𝑀 , these features all

get smoothed out.

location of the horizon for 𝑎/𝑀 ≤ 1 and specifically, because of this, for 𝑎/𝑀 = 1, Ωp exhibits a divergence
at 𝑟 = 1. This divergence is avoided for 𝑎/𝑀 ≳ 1 since Δ ≠ 0 but Δ changes only slightly from 0 and hence
we see a sharp change at 𝑟 ∼ 1. The dependence on \ is due to the other factors in equation 4.4.1. That
is, 𝑎/𝑀 ≳ 1 naked singularities feel the ‘phantom effects’ of the extremal event horizon. Further, we can
ascertain whether an observer is rotating with an angular frequency Ω above or below the ZAMO frequency
, that is we can distinguish whether Ω > or Ω < , by looking at the additional maxima-minima structure in
the region 𝑟 < 1. We note here that at Ω = itself Ωp is smooth, as can be seen from panels (c) and (d) of
figure B.1 and it is devoid of the sharp features that are obtained at 𝑟 = 1 for 𝑞 ≁ .5. Features for 𝑞 ∼ .5 are
highlighted in figure B.2.

On moving closer to the compact object, that is on decreasing 𝑟 , in any direction \, Ωp always increases.
Further, for 𝑟 → 0, on increasing \, observers get closer to the ring singularity and therefore see a rapidly
rising Ωp. Specifically, as \ → 𝜋/2, Ωp becomes unbounded. With increase in 𝑎/𝑀 , as is demonstrated in
both figures B.1 and B.2, we see that this 𝑟 = 1 feature becomes smoother. By 𝑎/𝑀 ∼ 1.1, these features
completely vanish and we interpret this result as providing an important criterion based on which one can
distinguish a near-extremal NS (1 < 𝑎/𝑀 < 1.1) from one with a higher spin. In the insets of both figures,
we explore approximately at what angle \ this sharp 𝑟 = 1 feature starts to appear from and this value of \
depends on 𝑎/𝑀 , in general.
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B.1 Behaviour of the Spin-Precession Frequency for Near-Extremal
Naked Singularities

In this section, we will discuss the reasons for the features that are exhibited by near-extremal naked singularities
that are different from those with higher spins. As before, let us define 𝜒 for convenience as,

𝜒 =
(𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 \

4𝑞(1 − 𝑞) 𝜌7Δ
, (B.1.1)

so that the spin-precession frequency ®Ωp becomes,

®Ωp = 𝜒

[
𝐴
√
Δ cos \ 𝑟 + 𝐵 sin \ \̂

]
. (B.1.2)

First, we de-dimensionalise the above expression by replacing 𝑎∗ = 𝑎/𝑀 and introducing the dimensionless
radial variable 𝑦 = 𝑟/𝑀 . We can then write 𝜒 as,

𝜒 =
(𝑦2 + 𝑎2

∗)2 − 𝑎2
∗Δ/𝑀 sin2 \

4𝑞(1 − 𝑞)𝜌7
∗Δ/𝑀

𝑀−5. (B.1.3)

Therefore, 𝜒 has mass dimension −5. Similarly, 𝐴 and 𝐵 have mass dimensions 3 and 4 respectively,
√
Δ

has mass dimension 1 and the term in the square braces of equation B.1.2 has a total mass dimension of 4.
Therefore, ®Ωp has an overall mass dimension of −1. In this section, henceforth, we work exclusively with
dimensionless quantities and simply drop all factors of 𝑀 . We write down now the dimensionless expressions
for a near-extremal NS by replacing 𝑎/𝑀 = 1 + 𝜖 (𝜖 > 0),

𝜒ne =
(𝑦2 + 1 + 2𝜖)2 − (1 + 2𝜖)Δne sin2 \

4𝑞(1 − 𝑞)𝜌7
neΔne

, (B.1.4)

𝐴ne = 2(1 + 𝜖)𝑦 − Ωne

8
{
8𝑦4 + 8(1 + 2𝜖)𝑦2 + 16(1 + 2𝜖)𝑦 + 3(1 + 4𝜖)

+ 4(1 + 2𝜖) (2Δne − 1 − 2𝜖) cos 2\ + (1 + 4𝜖) cos 4\} + 2Ω2
ne (1 + 3𝜖)𝑦 sin4 \,

𝐵ne = (1 + 𝜖) (𝑦2 − (1 + 2𝜖) cos2 \) +Ωne
{
(1 + 4𝜖)𝑦 cos4 \ + 𝑦2 (𝑦3 − 3𝑦2 − (1 + 2𝜖) (1 + sin2 \))

+ (1 + 2𝜖) cos2 \ (2𝑦3 − 𝑦2 + (1 + 2𝜖) (1 + sin2 \))
}

+ Ω2
ne (1 + 𝜖) sin2 \ [𝑦2 (3𝑦2 + 1 + 2𝜖) + (1 + 2𝜖) cos2 \ (𝑦2 − 1 − 2𝜖)],

Ωne =
2(1 + 𝜖)𝑦 sin \ − (1 − 2𝑞) 𝜌2

ne
√
Δne

sin \ [𝜌2
ne (𝑦2 + 1 + 2𝜖) + 2(1 + 2𝜖)𝑦 sin2 \]

,

Δne = 𝑦2 − 2𝑦 + 1 + 2𝜖,

𝜌2
ne = 𝑦2 + cos2 \ + 2𝜖 cos2 \,

where subscript ‘ne’ stands for ‘near-extremal.’ For some constant ^, we can write,

(Δne)^ ≈ (𝑦 − 1)2^
[
1 + 𝜖 2^

(𝑦−1)2

]
, if |𝑦 − 1| ≫ 𝜖

≈ 𝜖 ^ , otherwise,

(𝜌2
ne)^ ≈ (𝑦2 + cos2 \)^

[
1 + 𝜖 2 cos2 \

𝑦2+cos2 \

] ^
, if |𝑦2 + cos2 \ | ≫ 𝜖

≈ (𝜖 cos2 )^ , otherwise. (B.1.5)
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𝑦 = 1 was the location of the event horizon for an extremal black hole (𝑎/𝑀 = 1), which vanished as 𝑎/𝑀
was changed slightly from 1. As can be seen from the above expressions, this is a special point for Δne. For
𝜌ne, the two cases correspond to being far from and near the ring singularity at 𝑟 = 0, \ = 𝜋/2 respectively.

As can be seen from equation B.1.4, Ωne is finite and smooth always (remember that at the pole i.e., for
\ = 0, the only allowed value of is Ω = 0 and hence, Ωne, \=0 = 0). Therefore, 𝐴 and 𝐵 are also finite and
smooth and we can restrict ourselves to studying 𝜒ne to find any interesting ‘sharp’ features in the radial profile
of the modulus of the spin-precession frequency Ωp, for a near-extremal NS. Indeed, we can see from 𝜒ne

given in equation B.1.4 that the factor of Δne in the denominator will drive Ωp to rise sharply near 𝑦 = 1 for
near-extremal naked singularities. Specific maxima/minima structure in the radial profile of Ωp can also be
ascertained from equation B.1.4.





Appendix C

Reversal of the Acceleration and the
Spin-Precession Frequency1

Kerr stationary Killing observers (or equivalently adapted-Kerr static Killing observers) have four-velocities
𝑢′ (4.3.4) and four-accelerations denoted by 𝛼′ = ∇𝑢′𝑢

′. This in the equatorial plane is given as,

𝛼′ =

[
−
√
Δ(𝑎2𝑀 − 𝑟3)
𝑟3𝑔0̄0̄

]
(Ω −ΩK+) (Ω −ΩK−)

𝜕𝑟√
𝑔𝑟𝑟

. (C.0.1)

The term in the square braces is always negative for 0 ≤ 𝑎 ≤ 𝑀 and 𝑟H < 𝑟 (outside the horizon). Now,
remembering that ΩK+ ≥ 0,ΩK− ≤ 0 and adopting the usual convention ¯̂ ≥ 0, by comparing the expression
for the acceleration from the above expression with 𝛼′ = ¯̂𝑒 ˆ̄1, it can be verified that 𝑒 ˆ̄1 should be defined as,

𝑒 ˆ̄1 =


− 𝜕1√

𝑔11
, for Ω− < Ω ≤ ΩK−,

𝜕1√
𝑔11
, for ΩK− < Ω ≤ ΩK+,

− 𝜕1√
𝑔11
, for ΩK+ < Ω < Ω+.

(C.0.2)

That is, the acceleration experienced by these observers changes in direction across Ω = ΩK±. Physically, as
was discussed in [322], this is related to the change in the sense of the centrifugal forces experienced by these
observers, and a more general analysis for arbitrary axially symmetric stationary spacetimes is presented in
[360]. Also, for a discussion on how to define 𝑒 ˆ̄1 for non-accelerating Kepler observers, see §IV.A.3 of [151].

As noted in §4.3.2, with the introduction of 𝜖3̄ as (see §3 of [321]),

𝜖3̄ =
−𝑔0̄3̄𝜕0̄ + 𝑔0̄0̄𝜕3̄√︁

𝑔0̄0̄Δ03
, (C.0.3)

1Reprinted excerpt with permission from [P. Kocherlakota, P. S. Joshi, S. Bhattacharyya, C. Chakraborty, A. Ray, and S. Biswas,
To appear in Mon. Not. R. Astron. Soc. (2019).]. Copyright (2019) by the Oxford University Press.
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we can rewrite the right-handed FS tetrad for these observers (4.3.17) as,

{
𝑒 ˆ̄1, 𝑒 ˆ̄2, 𝑒 ˆ̄3

}
=


{
− 𝜕1√

𝑔11
, 𝜖3̄,

𝜕2
𝑔22

}
, for Ω− < Ω ≤ ΩK−,{

𝜕1√
𝑔11
, 𝜖3̄,−

𝜕2
𝑔22

}
, for ΩK− < Ω ≤ ΩK+,{

− 𝜕1√
𝑔11
, 𝜖3̄,

𝜕2
𝑔22

}
, for ΩK+ < Ω < Ω+.

(C.0.4)

At this juncture, let us remember that both ΩK± are allowed orbital angular frequencies only when 𝑟ISCO− ≤ 𝑟 .
More fully,

ΩK−,ΩK+ ∈ (Ω−,Ω+), for 𝑟ISCO− ≤ 𝑟, (C.0.5)

only ΩK+ ∈ (Ω−,Ω+), for 𝑟ISCO+ ≤ 𝑟 < 𝑟ISCO−,

ΩK−,ΩK+ ∉ (Ω−,Ω+), for 𝑟 < 𝑟ISCO+.

Since we know that the acceleration experienced by static observers is always along +𝜕1, and that sign changes
occur at ΩK±, we can find the direction in which the acceleration experienced by an arbitrary Killing observer
in the Kerr spacetime points along.

For a pictorial representation of the above discussion, we plot in figure C.1 the variation in Ω±,ΩK± with 𝑟 ,
for black holes with spin parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 . Orange and purple represent regions where the
acceleration vector points along ±𝜕1 and the appropriate definitions for the right-handed Frenet-Serret tetrads
in these regions are

{
± 𝜕1√

𝑔11
, 𝜖3̄,∓

𝜕2
𝑔22

}
respectively.

With respect to the right-handed FS triad defined above, the spin-precession frequency is given as,

Ω′
p = − �̄�1𝑒 ˆ̄3, (C.0.6)

�̄�1 = − Ω𝑟3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2

𝑟3𝑔0̄0̄
.

Clearly then the spin-precession frequency changes signs (relative to the right-handed FS triad) at the zeroes
of the numerator, i.e. when,

Ω𝑟3 + 3𝑀Ω𝑟2 (𝑎Ω − 1) + 𝑎𝑀 (𝑎Ω − 1)2 = 0, (C.0.7)

and the orbits where the reversal of the spin-precession frequency occurs do not, in general, coincide with the
Kepler orbits where the centrifugal force reverses. If we denote the roots of (C.0.7) by Ω1,Ω2, then

Ω1 =
2𝑎𝑀

2𝑎2𝑀 − 𝑟2 (𝑟 − 3𝑀) +
√
𝑟6 − 6𝑀𝑟5 + 9𝑀2𝑟4 − 4𝑎2𝑀𝑟3

,

Ω2 =
1

Ω1 (𝑎2 + 3𝑟2)
. (C.0.8)

Let us define the 𝑞-values corresponding to Ω1,Ω2 as,

𝑞1 =
Ω1 −Ω−
Ω+ −Ω−

, 𝑞2 =
Ω2 −Ω−
Ω+ −Ω−

. (C.0.9)

It can be verified that that 𝑞2 < 𝑞static < 𝑞Z < 𝑞1. That is, the spin-precession frequencies experienced by
static observers and the ZAMO always have the same sense, relative to their right-handed Frenet-Serret triads.
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(a) 𝑎 = .1𝑀 , Sense of the Acceleration
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(c) 𝑎 = .9𝑀 , Sense of the Acceleration

Figure C.1: We plot here the variation in Ω±,ΩK± with 𝑟 in dotted-black (topmost line), dashed-black, red and
blue respectively. The vertical brown, dashed-gray, dashed-red and dashed-blue lines represent the location of
the horizon 𝑟H, the ergoradius in the equatorial plane 𝑟+ (𝜋/2) and the ISCOs of co-rotating and counter-rotating
Kepler observers 𝑟ISCO± respectively. We plot over the range 𝑟H < 𝑟 ≤ 10𝑀 and use units of 𝑀−1 on the
y-axis and of 𝑀 on the x-axis, for black holes of mass 𝑀 and spin parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 in panels
(a-c) respectively. The shading represents the sign of the acceleration experienced by adapted-Kerr static
Killing observers. Orange and purple represent regions where the acceleration vector points along ±𝜕1 and
the appropriate definitions for the right-handed Frenet-Serret tetrads in these regions are

{
± 𝜕1√

𝑔11
, 𝜖3̄,∓

𝜕2
𝑔22

}
respectively. To compare, the direction in which the black hole spin points in is given by 𝑧 = − 𝜕2√

𝑔22
.
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(a) 𝑎 = .1𝑀 , Sense of the Precession Frequency
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(c) 𝑎 = .9𝑀 , Sense of the Precession Frequency

Figure C.2: We plot here the variation in Ω±,Ω1,Ω2 with 𝑟 in dotted-black (topmost line), dashed-black,
orange and green respectively. The vertical brown and dashed-gray lines represent the location of the horizon
𝑟H and ergoradius in the equatorial plane 𝑟+ (𝜋/2) respectively. We display the orange and green lines only
when they satisfy Ω− < Ω1,Ω2 < Ω+, over the range 𝑟H < 𝑟 ≤ 10𝑀 . We plot in units of 𝑀−1 on the
𝑦-axis and in units of 𝑀 on the 𝑥-axis, for black holes with spin parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 in panels
(a-c) respectively. We display the regions in the Kerr spacetime where observers moving on equatorial circular
geodesics experience positive and negative spin-precession frequencies relative to the 𝑒 ˆ̄3 leg of their respective
right-handed FS tetrads, in blue and yellow respectively. That is, the spin-precession frequencies in these
regions are given as Ω′ = ±|�̄�1 |𝑒 ˆ̄3 respectively. Further, these plots imply that the spin-precession frequency
associated with stationary observers of fixed orbital radius radius 𝑟 changes in sense at most only once with
change in Ω, i.e. either when Ω = Ω1 or Ω = Ω2. It is also interesting to note that there exist regions (in 𝑟)

where the spin-precession frequency does not change in sense.
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Moreover, as can be seen from figure 4.3, 𝑞K− < 𝑞static < 𝑞Z < 𝑞K+ and so the 𝑒 ˆ̄3 legs of the static observers
and the ZAMOs also point along the same direction 𝑧 ≡ −𝜕2/

√
𝑔22, where we have introduced 𝑧 to denote

the unit vector that points along the 𝑧-axis in the Boyer-Lindquist (and also adapted-Boyer-Lindquist) chart
and is the direction in which the black hole spin points. Therefore, the spin-precession experienced by static
observers and the ZAMOs has the same sense relative to the BH spin orientation as well.

In figure C.2, we show the variation of Ω1,Ω2 with 𝑟 , when Ω− < Ω1,Ω2 < Ω+, for black holes with mass 𝑀
and spin parameters 𝑎 = .1𝑀, .5𝑀, .9𝑀 . Since the spin-precession frequency changes sense at Ω = Ω1,Ω2,
this figure implies that the spin-precession frequency associated with stationary observers at a fixed orbital
radius radius 𝑟 changes at most only once, either when Ω = Ω1 or Ω = Ω2. Furthermore, there also exists a
region where the spin-precession frequency does not change in sense. In this figure, we display the regions in
the Kerr spacetime where observers moving on equatorial circular geodesics experience positive and negative
spin-precession frequencies relative to the 𝑒 ˆ̄3 leg of their respective right-handed FS tetrads, in blue and yellow
respectively. That is, the spin-precession frequencies in these regions are given as Ω′ = ±|�̄�1 |𝑒 ˆ̄3 respectively.





Appendix D

The Connecting Vector for Earth and
Stationary Killing Observers1

The motion of earth in the Kerr spacetime can naturally be modelled by that of an asymptotic static observer.
As discussed in §4.3, the direction to earth (when causally connected) in the Frenet-Serret spatial triad of an
equatorial Kerr static observer is a constant vector. This is associated with the notion of the (null) connecting
vector of the Kerr static Killing congruence. Now, if we denote the direction to earth in the Kerr static
observer’s FS spatial triad as 𝑛𝑖 , then we can write it most generally as,

𝑛𝑖 = (sin \E cos 𝜙E, sin \E sin 𝜙E, cos \E) . (D.0.1)

Now, we will discuss here how to find the direction towards earth in the frame of a pulsar that moves on a
circular orbit in the equatorial plane of a Kerr black hole. Such an observer can be treated as a static Killing
observer in the adapted-Kerr metric. In this metric however, earth becomes a stationary Killing observer, and
the aim here then is to find the connecting vector between a static and a stationary Killing observer.

Let the tangent to the null geodesic connecting a pulsar (that can be treated as moving on an adapted-Kerr
static Killing orbit) and an asymptotic adapted-Kerr static Killing observer be given as 𝑛 ˆ̄𝑗 , in the associated
spatial FS triad. Then, in analogy with (D.0.1), we can write,

𝑛
ˆ̄𝑗 (𝜙E) =

(
sin \̄E cos 𝜙E, sin \̄E sin 𝜙E, cos \̄E

)
. (D.0.2)

Since a Kerr static Killing observer becomes an adapted-Kerr stationary Killing observer, in a coordinate time
𝑑𝑡, in the adapted-Boyer Lindquist coordinates, it moves by an amount −Ω 𝑑𝑡 along in the 𝜙 direction. The
components of the connecting vector to an asymptotic adapted-Kerr static Killing observer that is present at an
infinitesimal adapted-Boyer-Lindquist 𝜙-coordinate shift of −Ω 𝑑𝑡 can be found by a rotation about the 𝑧-axis
in the adapted-Kerr metric by −Ω 𝑑𝑡. Instead, we can simply rotate the above vector (D.0.2) in the FS frame
of the adapted-Kerr static Killing observer by the appropriate rotation matrix 𝑅[±𝑒 ˆ̄3,−Ω 𝑑𝜏]. The signs turn

1Reprinted excerpt with permission from [P. Kocherlakota, P. S. Joshi, S. Bhattacharyya, C. Chakraborty, A. Ray, and S. Biswas,
To appear in Mon. Not. R. Astron. Soc. (2019).]. Copyright (2019) by the Oxford University Press.
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up because,

𝑧 = − 𝜕2√
𝑔22

=


−𝑒 ˆ̄3, for Ω− < Ω ≤ ΩK−,

𝑒 ˆ̄3, for ΩK− < Ω ≤ ΩK+,

−𝑒 ˆ̄3, for ΩK+ < Ω < Ω+.

(D.0.3)

Here we have assumed that the pulsar orbit radius 𝑟 lies outside the counter-rotating ISCO, i.e. 𝑟ISCO− ≤ 𝑟 so
that both Kepler frequenciesΩK± are allowed,Ω− < ΩK± < Ω+. The analysis can be extended to accommodate
observers present on orbital radii 𝑟 in the range 𝑟H < 𝑟 < 𝑟ISCO− by following the discussion in appendix C.
Now, we can write

𝑛
ˆ̄𝑗 (𝜙E −Ω𝑑𝜏) = 𝑅[±𝑒 ˆ̄3,−Ω𝑑𝜏]𝑛

ˆ̄𝑗 (𝜙E) = (D.0.4)(
sin \̄E cos

(
𝜙E ∓Ω𝑑𝜏

)
, sin \̄E sin

(
𝜙E ∓Ω𝑑𝜏

)
, cos \̄E

)
,

where in the above, one can use the appropriate redshift formulae to relate time differences 𝑑𝑡 and 𝑑𝜏.
Furthermore, since all infinitesimal rotations are around the same constant axis, we can write the direction to
earth in FS spatial triad associated with the adapted-Kerr static Killing observer as being given by,

𝑛
ˆ̄𝑗
E (𝜏) =

(
cos (Ω𝜏) sin \̄E,∓ sin (Ω𝜏) sin \̄𝐸 , cos \̄E

)
, (D.0.5)

where for convenience we have set 𝜙E = 0 and the signs correspond to the signs of 𝑒 ˆ̄3 in (D.0.3). This
expression is consistent with relevant statements in §3 of [321]. It is useful to note that at 𝜏 = 0,

𝑛
ˆ̄𝑗
E (𝜏 = 0) =

(
sin \̄E, 0, cos \̄E

)
, (D.0.6)

and so, the initial condition for the beam vector remains identical to the case when the pulsar is modelled as a
Kerr static Killing observer.



Appendix E

Solution for the Beam Vector1

We show here the analytical solution to solve the beam evolution equation,

¤̂𝐵 = 𝜔�̂� × 𝑆, (E.0.1)

where 𝑆 in the above is obtained from (4.6.17). It is useful to include this simple calculation to indicate that
the extension to pulsars moving on non-equatorial Killing orbits in the Kerr spacetime is straightforward, and
involves just additional (constant) rotation matrices. Also, this can serve as a starting point for a more general
analysis for pulsar’s moving on arbitrary time-like orbits.

We use the Euclidean notation that was employed in §4.6. We first move to a rotating frame {𝑒′
𝑖
, 𝑖=1, 2, 3} in

which 𝑆(𝜏) becomes time-independent i.e., 𝑆′(𝜏) = (sin 𝛽, 0, cos 𝛽). This achieved by a rotation around 𝑒3 by
−(𝜓 + 𝜎1𝜏), for which we use the rotation matrix𝑈1 = 𝑅[𝑒3,−(𝜓 + 𝜎1𝜏)] to write,

𝑈1𝑆(𝑡) = (sin 𝛽, 0, cos 𝛽). (E.0.2)

Remembering that if ®𝐴 = ®𝐵 × ®𝐶, then under rotations we have also, 𝑈1 ®𝐴 = 𝑈1 ®𝐵 × 𝑈1 ®𝐶. We now define
�̂�′ = 𝑈1�̂�, 𝑆

′ = 𝑈1𝑆, and write in the rotating frame,

𝑈1
¤̂𝐵 = 𝜔�̂�′ × 𝑆′. (E.0.3)

To rewrite the above equation completely in terms of the rotating frame, we write out ¤𝑈1 as,

¤𝑈1 = −𝜎1


0 −1 0
1 0 0
0 0 0

 𝑈1, (E.0.4)

1Reprinted excerpt with permission from [P. Kocherlakota, P. S. Joshi, S. Bhattacharyya, C. Chakraborty, A. Ray, and S. Biswas,
To appear in Mon. Not. R. Astron. Soc. (2019).]. Copyright (2019) by the Oxford University Press.
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to obtain the following,

¤̂𝐵′ = ¤𝑈1�̂� + 𝜔�̂�′ × 𝑆′

= ¤𝑈1𝑈
𝑇
1 𝑈1�̂� + 𝜔�̂�′ × 𝑆′

= −𝜎1


0 −1 0
1 0 0
0 0 0

 �̂�
′ + 𝜔�̂�′ × 𝑆′

= �̂�′ × (𝜎1𝑒
′
3) + 𝜔�̂�

′ × 𝑆′

= �̂�′ ×
(
𝜎1𝑒

′
3 + 𝜔(sin 𝛽𝑒′1 + cos 𝛽𝑒′3)

)
= 𝜔eff�̂�

′ × 𝑆′eff, (E.0.5)

where we have introduced 𝜔eff so 𝑆′eff has unit norm, i.e.,

𝜔2
eff = 𝜔2 + 𝜎2

1 + 2𝜔𝜎1 cos 𝛽, (E.0.6)

𝑆′eff =

(
𝜔 sin 𝛽
𝜔eff

, 0,
𝜎1 + 𝜔 cos 𝛽

𝜔eff

)
. (E.0.7)

And we recognize that 𝜔eff is simply the norm of the vector difference of the intrinsic spin angular frequency
and the spin-precession frequency vectors, 𝜔𝑆 and −𝜎1𝑒3.

Now that 𝑆′eff is already a time-independent vector, we can immediately apply Rodrigues’ rotation formula to
obtain the beam vector in this frame. However, we make a second coordinate transformation and simply read
off the beam vector in the new frame. We define 𝜒 from writing 𝑆′eff = (sin 𝜒, 0, cos 𝜒), that is,

𝜒 = sin−1
(
𝜔

𝜔eff
sin 𝛽

)
. (E.0.8)

We can then send 𝑆′eff to 𝑒′′3 via 𝑒′′3 = 𝑅
[
𝑒′2,−𝜒

]
𝑆′eff = 𝑈2𝑆

′
eff. Then if we introduce �̂�′′ = 𝑈2�̂�

′, we can write

𝑈2
¤̂𝐵′ = 𝑈2

(
𝜔eff�̂�

′ × 𝑆′eff

)
, (E.0.9)

and since we are simply performing a time-independent rotation transformation, 𝑑𝑈2
𝑑𝜏

= 0 and ,

¤̂𝐵′′ = 𝜔eff�̂�
′′ × 𝑒′′3 . (E.0.10)

By an application of Rodrigues’ rotation formula, it can be seen immediately that the solution is simply given
as,

𝐵′′
1 = 𝐷1 cos (𝜔eff𝜏) + 𝐷2 sin (𝜔eff𝜏), (E.0.11)

𝐵′′
2 = 𝐷2 cos (𝜔eff𝜏) − 𝐷1 sin (𝜔eff𝜏),

𝐵′′
3 = 𝐷3.

Note that the integration constants 𝐷1, 𝐷2, 𝐷3 are not free since we want to consider a specific initial condition
for �̂� given in (4.6.13). We will first obtain �̂� by performing in series the inverse transformations on �̂�′′ and
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then proceed to set the initial conditions. The requisite transformations to obtain �̂� are given as,

�̂� = 𝑈𝑇
1 𝑈

𝑇
2 �̂�

′′, (E.0.12)

to obtain in the Frenet-Serret frame,

𝐵1=𝐷1 [cos (𝜔eff𝜏) cos (𝜓+𝜎1𝜏) cos 𝜒+sin (𝜔eff𝜏) sin (𝜓+𝜎1𝜏)]

+𝐷2 [sin (𝜔eff𝜏) cos (𝜓+𝜎1𝜏) cos 𝜒−cos (𝜔eff𝜏) sin (𝜓+𝜎1𝜏)]

+𝐷3 cos (𝜓+𝜎1𝜏) sin 𝜒, (E.0.13)

𝐵2=𝐷1 [cos (𝜔eff𝜏) sin (𝜓+𝜎1𝜏) cos 𝜒−sin (𝜔eff𝜏) cos (𝜓+𝜎1𝜏)]

+𝐷2 [sin (𝜔eff𝜏) sin (𝜓+𝜎1𝜏) cos 𝜒+cos (𝜔eff𝜏) cos (𝜓+𝜎1𝜏)] ,

+𝐷3 sin (𝜓+𝜎1𝜏) sin 𝜒

𝐵3= − sin 𝜒 [𝐷1 cos (𝜔eff𝜏)+𝐷2 sin (𝜔eff𝜏)]+𝐷3 cos 𝜒.

From the condition that the beam vector above (E.0.13) satisfy the initial condition (4.6.13), we obtain

𝐷1 = sin \𝐸 cos 𝜒 cos𝜓 − cos \𝐸 sin 𝜒, (E.0.14)

𝐷2 = − sin \𝐸 sin𝜓,

𝐷3 = cos \𝐸 cos 𝜒 + sin \𝐸 sin 𝜒 cos𝜓.

Note that the initial phase of the spin-vector 𝑆 denoted here by 𝜓 is still free to choose. Once this is chosen,
we obtain the full solution for the evolution of the beam vector of a pulsar that remains fixed in space near a
Kerr black hole or naked singularity.

Without loss of generality, let us pick the initial phase for 𝑆0 to be 𝜓 = 0. From equation (4.6.16), it is clear
that one obtains pulses only for specific geometric configurations, \𝐸 = ±𝛼 + 𝛽. Also,

𝐷1 = sin (\𝐸 − 𝜒), (E.0.15)

𝐷2 = 0,

𝐷3 = cos (\𝐸 − 𝜒).

And the beam vector is given by,

𝐵1=cos (𝜎1𝜏) [cos (𝜔eff𝜏) sin (\𝐸−𝜒) cos 𝜒+cos (\𝐸−𝜒) sin 𝜒]

+sin (𝜎1𝜏) sin (𝜔eff𝜏) sin (\𝐸−𝜒), (E.0.16)

𝐵2=−cos (𝜎1𝜏) sin (𝜔eff𝜏) sin (\𝐸−𝜒)

+ sin (𝜎1𝜏) [cos (𝜔eff𝜏) sin (\𝐸−𝜒) cos 𝜒+cos (\𝐸−𝜒) sin 𝜒] ,

𝐵3=−cos (𝜔eff𝜏) sin (\𝐸−𝜒) sin 𝜒+cos (\𝐸−𝜒) cos 𝜒.

For pulsars moving along the world-lines of arbitrary static Killing observers, not restricted to the equatorial
plane, the spin-precession frequency vector Ω̂𝑝 , in the FS frame, does not lie along the 𝑒3 leg of their respective
spatial FS tetrads. It is still a constant vector that can be expressed as a linear combination of their FS tetrad’s
𝑒1 and 𝑒3 legs, as can be seen from (4.2.24). To obtain the equivalent expression for �̂�, one starts off with
a coordinate transformation (denoted by 𝑈0, say) that corresponds to a rotation change of axes which sets
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Ω̂𝑝 to (0, 0, 1). One can then follow through the entire routine from (E.0.2), finally ending with the inverse
coordinate transformation𝑈𝑇

0 to obtain the beam vector �̂�(𝜏). Heuristically, it is clear that the same divergence
manifests itself for pulsars held fixed spatially off the equatorial plane and close to the ergosurface of a Kerr
BH or NS, for Kerr static Killing observers.
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